Theoretical Prediction on the Reaction of Dimeric Ca Hydride [(BDI)Ca(μ-H)]2 With 1,3-Cyclopentadiene to Produce [(BDI)Ca(μ-C5H5)]2: The Decisive Role of Aromatization
{"title":"Theoretical Prediction on the Reaction of Dimeric Ca Hydride [(BDI)Ca(μ-H)]2 With 1,3-Cyclopentadiene to Produce [(BDI)Ca(μ-C5H5)]2: The Decisive Role of Aromatization","authors":"Nannan Liu, Hongfeng Li","doi":"10.1002/qua.27477","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study explores the reaction mechanism between [(BDI)Ca(μ-H)]<sub>2</sub> and cyclopentadiene (C<sub>5</sub>H<sub>6</sub>). By analyzing the reaction pathways, it is found that compared with the traditional Ca<span></span>H/CC insertion reaction of polyenes with [(BDI)Ca(μ-H)]<sub>2</sub>, C<sub>5</sub>H<sub>6</sub> is more inclined to undergo a Ca<span></span>H/CH<sub>2</sub> dehydrogenation reaction, resulting in more stable cyclopentadienyl complexes. The subsequent reactions also tend to continue with dehydrogenation to form dimeric complexes. The aromatization process of C<sub>5</sub>H<sub>6</sub> is a key factor driving this reaction trend. This result provides a new perspective for understanding the catalytic behavior of calcium hydride derivatives and can help in the design and synthesis of new catalysts and functional materials based on such compounds.</p>\n </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 17","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qua.27477","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the reaction mechanism between [(BDI)Ca(μ-H)]2 and cyclopentadiene (C5H6). By analyzing the reaction pathways, it is found that compared with the traditional CaH/CC insertion reaction of polyenes with [(BDI)Ca(μ-H)]2, C5H6 is more inclined to undergo a CaH/CH2 dehydrogenation reaction, resulting in more stable cyclopentadienyl complexes. The subsequent reactions also tend to continue with dehydrogenation to form dimeric complexes. The aromatization process of C5H6 is a key factor driving this reaction trend. This result provides a new perspective for understanding the catalytic behavior of calcium hydride derivatives and can help in the design and synthesis of new catalysts and functional materials based on such compounds.
期刊介绍:
Since its first formulation quantum chemistry has provided the conceptual and terminological framework necessary to understand atoms, molecules and the condensed matter. Over the past decades synergistic advances in the methodological developments, software and hardware have transformed quantum chemistry in a truly interdisciplinary science that has expanded beyond its traditional core of molecular sciences to fields as diverse as chemistry and catalysis, biophysics, nanotechnology and material science.