{"title":"Scalable Temporal Dimension Preserved Tensor Completion for Missing Traffic Data Imputation with Orthogonal Initialization","authors":"Hong Chen;Mingwei Lin;Jiaqi Liu;Zeshui Xu","doi":"10.1109/JAS.2024.124278","DOIUrl":null,"url":null,"abstract":"Dear Editor, This letter puts forward a novel scalable temporal dimension preserved tensor completion model based on orthogonal initialization for missing traffic data (MTD) imputation. The MTD imputation acts directly on accessing the traffic state, and affects the traffic management. However, it still faces the following challenges: 1) The MTD imputation is usually formulated as matrix completion or tensor completion, which ignores the information across different dimensions; 2) Most of the existing models cannot generalize to traffic datasets of different scales or different missing rates; and 3) The MTD imputation models based on Gaussian random initialization easily leads to gradient explosion or vanishing, so that the training accuracy is not effectively improved. Inspired by these findings, the proposed scalable temporal dimension preserved tensor completion (ST-DPTC) model creatively establishes the following three-fold ideas: a) Incorporating the dimension preserved tensor completion (DPTC) to extract more distinctive traffic structure changes from the low-rank latent factor tensors; b) Adopting a scalable temporal (ST) regularization with first-order difference and second-order difference operators to adapt to different scales of traffic data; and c) Embedding ST regularization into DPTC with orthogonal initialization to perform low-rank latent factor tensor extraction and MTD imputation. Results on real-world traffic datasets with different scales show that our proposed model exceeds the state-of-the-art models in terms of the imputation accuracy.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"11 10","pages":"2188-2190"},"PeriodicalIF":15.3000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10664599","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10664599/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Dear Editor, This letter puts forward a novel scalable temporal dimension preserved tensor completion model based on orthogonal initialization for missing traffic data (MTD) imputation. The MTD imputation acts directly on accessing the traffic state, and affects the traffic management. However, it still faces the following challenges: 1) The MTD imputation is usually formulated as matrix completion or tensor completion, which ignores the information across different dimensions; 2) Most of the existing models cannot generalize to traffic datasets of different scales or different missing rates; and 3) The MTD imputation models based on Gaussian random initialization easily leads to gradient explosion or vanishing, so that the training accuracy is not effectively improved. Inspired by these findings, the proposed scalable temporal dimension preserved tensor completion (ST-DPTC) model creatively establishes the following three-fold ideas: a) Incorporating the dimension preserved tensor completion (DPTC) to extract more distinctive traffic structure changes from the low-rank latent factor tensors; b) Adopting a scalable temporal (ST) regularization with first-order difference and second-order difference operators to adapt to different scales of traffic data; and c) Embedding ST regularization into DPTC with orthogonal initialization to perform low-rank latent factor tensor extraction and MTD imputation. Results on real-world traffic datasets with different scales show that our proposed model exceeds the state-of-the-art models in terms of the imputation accuracy.
期刊介绍:
The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control.
Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.