{"title":"On the performance of uplink power-domain NOMA with imperfect CSI and SIC in 6G networks","authors":"Volkan Özduran;Mohammadali Mohammadi;Nikolaos Nomikos;Imran Shafique Ansari;Panagiotis Trakadas","doi":"10.23919/JCN.2024.000039","DOIUrl":null,"url":null,"abstract":"Sixth generation (6G) networks must adopt spectral-efficient communication techniques to ensure massive connectivity for coexisting humans and machines. However, the impact of various practical issues must be analyzed and addressed, including imperfect channel state information (CSI), stemming by the channel estimation error (CEE) and feedback delay (F-D) with time-variant channels. This paper focuses on these issues in the context of uplink networks, relying on power-domain nonorthogonal multiple access (NOMA). Moreover, the degrading effect of imperfect successive interference cancellation (SIC), when randomly deployed multiple mobile terminals communicate with a single base station (BS) is considered. The system performance is measured by means of outage probability, error probability, ergodic rate, throughput, energy efficiency, and spectral efficiency. Analytical, asymptotic, and computer simulation results demonstrate that CEE causes system coding gain losses for low signal-to-noise ratio (SNR) while the disruptive effects of CEE become negligible in the high SNR. Results also show that F-D does not degrade the system performance in the low SNR but it causes system coding gain losses for high SNR. Also, imperfect SIC does not have any detrimental effect on the system performance for low SNR but results in reduced coding gain for high SNR.","PeriodicalId":54864,"journal":{"name":"Journal of Communications and Networks","volume":"26 4","pages":"445-460"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10666068","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10666068/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Sixth generation (6G) networks must adopt spectral-efficient communication techniques to ensure massive connectivity for coexisting humans and machines. However, the impact of various practical issues must be analyzed and addressed, including imperfect channel state information (CSI), stemming by the channel estimation error (CEE) and feedback delay (F-D) with time-variant channels. This paper focuses on these issues in the context of uplink networks, relying on power-domain nonorthogonal multiple access (NOMA). Moreover, the degrading effect of imperfect successive interference cancellation (SIC), when randomly deployed multiple mobile terminals communicate with a single base station (BS) is considered. The system performance is measured by means of outage probability, error probability, ergodic rate, throughput, energy efficiency, and spectral efficiency. Analytical, asymptotic, and computer simulation results demonstrate that CEE causes system coding gain losses for low signal-to-noise ratio (SNR) while the disruptive effects of CEE become negligible in the high SNR. Results also show that F-D does not degrade the system performance in the low SNR but it causes system coding gain losses for high SNR. Also, imperfect SIC does not have any detrimental effect on the system performance for low SNR but results in reduced coding gain for high SNR.
期刊介绍:
The JOURNAL OF COMMUNICATIONS AND NETWORKS is published six times per year, and is committed to publishing high-quality papers that advance the state-of-the-art and practical applications of communications and information networks. Theoretical research contributions presenting new techniques, concepts, or analyses, applied contributions reporting on experiences and experiments, and tutorial expositions of permanent reference value are welcome. The subjects covered by this journal include all topics in communication theory and techniques, communication systems, and information networks. COMMUNICATION THEORY AND SYSTEMS WIRELESS COMMUNICATIONS NETWORKS AND SERVICES.