The future of single-use plastics in life science: Sterile printing of PLA reduces greenhouse gas emissions by 80% and enables carbon neutrality

Lena Achleitner , Anna-Carina Frank , Osamah Mesef , Peter Satzer
{"title":"The future of single-use plastics in life science: Sterile printing of PLA reduces greenhouse gas emissions by 80% and enables carbon neutrality","authors":"Lena Achleitner ,&nbsp;Anna-Carina Frank ,&nbsp;Osamah Mesef ,&nbsp;Peter Satzer","doi":"10.1016/j.grets.2024.100132","DOIUrl":null,"url":null,"abstract":"<div><p>The European Union’s Green Deal emphasizes life science and biotechnology as key drivers for achieving a circular economy. However, the prevalent use of non-sustainable single-use plastics derived from petrochemical sources in life science research and development contradicts this ecological goal. This study presents a viable alternative through on-site sterile 3D printing of single-use plastics using poly(lactic acid) (PLA). The sterile printing of PLA demonstrates a substantial reduction in CO<span><math><msub><mrow></mrow><mrow><mi>2eq</mi></mrow></msub></math></span> emissions per shake flask, decreasing from 260 g CO<span><math><msub><mrow></mrow><mrow><mi>2eq</mi></mrow></msub></math></span> to 145 g CO<span><math><msub><mrow></mrow><mrow><mi>2eq</mi></mrow></msub></math></span>. Suitability for cell culture was demonstrated for sterile printed PLA, autoclaved high-temperature PLA and for suspension cell cultures in shake flasks using CHO and insect cells as well as adherent Vero cell cultures in cell culture wells. Further optimization of sustainable shake flasks is achieved by utilizing recycled PLA, resulting in a remarkable reduction to 73 g CO<span><math><msub><mrow></mrow><mrow><mi>2eq</mi></mrow></msub></math></span>, constituting a 72% decrease in CO<span><math><msub><mrow></mrow><mrow><mi>2eq</mi></mrow></msub></math></span> emissions compared to conventional single-use plastics. Moreover, by employing geometric optimization to minimize material usage, emissions can be further reduced to 44 g CO<span><math><msub><mrow></mrow><mrow><mi>2eq</mi></mrow></msub></math></span>, representing an 83% reduction in CO<span><math><msub><mrow></mrow><mrow><mi>2eq</mi></mrow></msub></math></span> emissions. Anticipated advancements in PLA production suggest future carbon net negative PLA production, potentially achieving zero carbon emissions for single-use plastics using PLA. The exceptionally cost-effective nature of 3D printed single-use plastics, coupled with negligible capital costs for implementation, positions sterile 3D printing as a practical solution aligned with the 2030 Green Deal goals. Moreover, ongoing improvements in bioplastic production underscore the feasibility of meeting the 2050 targets of carbon neutrality for single-use plastics in life science research and development.</p></div>","PeriodicalId":100598,"journal":{"name":"Green Technologies and Sustainability","volume":"3 1","pages":"Article 100132"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949736124000599/pdfft?md5=eb34b874a3907f5df5aaccd15979d685&pid=1-s2.0-S2949736124000599-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Technologies and Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949736124000599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The European Union’s Green Deal emphasizes life science and biotechnology as key drivers for achieving a circular economy. However, the prevalent use of non-sustainable single-use plastics derived from petrochemical sources in life science research and development contradicts this ecological goal. This study presents a viable alternative through on-site sterile 3D printing of single-use plastics using poly(lactic acid) (PLA). The sterile printing of PLA demonstrates a substantial reduction in CO2eq emissions per shake flask, decreasing from 260 g CO2eq to 145 g CO2eq. Suitability for cell culture was demonstrated for sterile printed PLA, autoclaved high-temperature PLA and for suspension cell cultures in shake flasks using CHO and insect cells as well as adherent Vero cell cultures in cell culture wells. Further optimization of sustainable shake flasks is achieved by utilizing recycled PLA, resulting in a remarkable reduction to 73 g CO2eq, constituting a 72% decrease in CO2eq emissions compared to conventional single-use plastics. Moreover, by employing geometric optimization to minimize material usage, emissions can be further reduced to 44 g CO2eq, representing an 83% reduction in CO2eq emissions. Anticipated advancements in PLA production suggest future carbon net negative PLA production, potentially achieving zero carbon emissions for single-use plastics using PLA. The exceptionally cost-effective nature of 3D printed single-use plastics, coupled with negligible capital costs for implementation, positions sterile 3D printing as a practical solution aligned with the 2030 Green Deal goals. Moreover, ongoing improvements in bioplastic production underscore the feasibility of meeting the 2050 targets of carbon neutrality for single-use plastics in life science research and development.

一次性塑料在生命科学领域的未来:聚乳酸无菌印刷可减少 80% 的温室气体排放,实现碳中和
欧盟的 "绿色协议 "强调,生命科学和生物技术是实现循环经济的关键驱动力。然而,在生命科学研发中普遍使用石油化工来源的非可持续性一次性塑料与这一生态目标背道而驰。本研究通过使用聚乳酸(PLA)对一次性塑料进行现场无菌三维打印,提出了一种可行的替代方案。聚乳酸的无菌打印大大减少了每个摇瓶的二氧化碳排放量,从 260 克二氧化碳当量减少到 145 克二氧化碳当量。无菌印刷聚乳酸、高温高压聚乳酸和摇瓶中的悬浮细胞培养(使用 CHO 和昆虫细胞)以及细胞培养孔中的粘附 Vero 细胞培养均证明适合细胞培养。通过使用回收的聚乳酸,可持续摇瓶的性能得到了进一步优化,二氧化碳当量显著降低到 73 克,与传统一次性塑料相比,二氧化碳当量排放量减少了 72%。此外,通过采用几何优化技术最大限度地减少材料用量,还可将排放量进一步减少到 44 克 CO2eq,相当于减少了 83% 的 CO2eq 排放量。聚乳酸生产领域的预期进展表明,未来聚乳酸生产将出现碳净负值,使用聚乳酸的一次性塑料可能实现零碳排放。三维打印一次性塑料具有极高的成本效益,而且实施成本可以忽略不计,这使得无菌三维打印成为符合 2030 年绿色交易目标的实用解决方案。此外,生物塑料生产的不断改进也强调了实现 2050 年生命科学研发中一次性塑料碳中和目标的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信