Physics-Aware Neural Implicit Solvers for multiscale, parametric PDEs with applications in heterogeneous media

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
{"title":"Physics-Aware Neural Implicit Solvers for multiscale, parametric PDEs with applications in heterogeneous media","authors":"","doi":"10.1016/j.cma.2024.117342","DOIUrl":null,"url":null,"abstract":"<div><p>We propose Physics-Aware Neural Implicit Solvers (PANIS), a novel, data-driven framework for learning surrogates for parametrized Partial Differential Equations (PDEs). It consists of a probabilistic, learning objective in which weighted residuals are used to probe the PDE and provide a source of <em>virtual</em> data i.e. the actual PDE never needs to be solved. This is combined with a physics-aware implicit solver that consists of a much coarser, discretized version of the original PDE, which provides the requisite information bottleneck for high-dimensional problems and enables generalization in out-of-distribution settings (e.g. different boundary conditions). We demonstrate its capability in the context of random heterogeneous materials where the input parameters represent the material microstructure. We extend the framework to multiscale problems and show that a surrogate can be learned for the effective (homogenized) solution without ever solving the reference problem. We further demonstrate how the proposed framework can accommodate and generalize several existing learning objectives and architectures while yielding probabilistic surrogates that can quantify predictive uncertainty.</p></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0045782524005978/pdfft?md5=5d214a5c236a694eb3dbe2d44ff5d590&pid=1-s2.0-S0045782524005978-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524005978","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We propose Physics-Aware Neural Implicit Solvers (PANIS), a novel, data-driven framework for learning surrogates for parametrized Partial Differential Equations (PDEs). It consists of a probabilistic, learning objective in which weighted residuals are used to probe the PDE and provide a source of virtual data i.e. the actual PDE never needs to be solved. This is combined with a physics-aware implicit solver that consists of a much coarser, discretized version of the original PDE, which provides the requisite information bottleneck for high-dimensional problems and enables generalization in out-of-distribution settings (e.g. different boundary conditions). We demonstrate its capability in the context of random heterogeneous materials where the input parameters represent the material microstructure. We extend the framework to multiscale problems and show that a surrogate can be learned for the effective (homogenized) solution without ever solving the reference problem. We further demonstrate how the proposed framework can accommodate and generalize several existing learning objectives and architectures while yielding probabilistic surrogates that can quantify predictive uncertainty.

多尺度、参数化 PDE 的物理感知神经隐含求解器在异质介质中的应用
我们提出了物理感知神经隐式求解器(PANIS),这是一种新颖的数据驱动框架,用于学习参数化偏微分方程(PDEs)的代理变量。它由一个概率学习目标组成,其中加权残差用于探测偏微分方程,并提供虚拟数据源,即无需求解实际偏微分方程。它与物理感知隐式求解器相结合,后者由原始 PDE 的更粗糙、离散化版本组成,为高维问题提供了必要的信息瓶颈,并能在分布外设置(如不同的边界条件)中实现泛化。我们在输入参数代表材料微观结构的随机异质材料中展示了其能力。我们将该框架扩展到多尺度问题,并证明无需求解参考问题就能学习到有效(均质化)解决方案的替代方案。我们进一步展示了所提出的框架如何适应和推广现有的几个学习目标和架构,同时产生可以量化预测不确定性的概率代理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信