Athar Javed , Muhammad Haseeb , Altaf Hussain , Muhammad Amir Rafiq
{"title":"Properties of bismuth based Bi2A3 (A = S, Se, Te) chalcogenides for optoelectronic and thermoelectric applications","authors":"Athar Javed , Muhammad Haseeb , Altaf Hussain , Muhammad Amir Rafiq","doi":"10.1016/j.ssc.2024.115669","DOIUrl":null,"url":null,"abstract":"<div><p>Structural, electronic, optical, mechanical, thermoelectric and dielectric properties of binary Bi<sub>2</sub>A<sub>3</sub> (A = S, Se, Te) chalcogenide semiconductors are studied by first-principles approach. Bismuth sulfide (Bi<sub>2</sub>S<sub>3</sub>) is found to be structurally stable in orthorhombic structure while bismuth selenide (Bi<sub>2</sub>Se<sub>3</sub>) and bismuth telluride (Bi<sub>2</sub>Te<sub>3</sub>) are stable in trigonal structure. Calculated mechanical properties reveal that all three Bi<sub>2</sub>A<sub>3</sub> (A = S, Se, Te) compounds fulfil the mechanical stability criteria. Band structure calculations reveal that the Bi<sub>2</sub>S<sub>3</sub> exhibits direct optical band gap (<em>E</em><sub><em>g</em></sub> = 1. 58 eV) which lies in the near-infrared (NIR) region, while the calculated <em>E</em><sub><em>g</em></sub> of Bi<sub>2</sub>Se<sub>3</sub> and Bi<sub>2</sub>Te<sub>3</sub> are found to be 0.53 eV and 0.35 eV, respectively lying in the far-infrared region. For Bi<sub>2</sub>S<sub>3</sub> and Bi<sub>2</sub>Se<sub>3</sub> compounds, the calculated dielectric properties show strong anisotropic behavior, while negligible anisotropic dielectric behavior is observed for Bi<sub>2</sub>Te<sub>3</sub>. Calculated optical properties show that all three Bi<sub>2</sub>A<sub>3</sub> compounds possess high absorption coefficient (> 10<sup>4</sup> cm<sup>−1</sup>). For all three Bi<sub>2</sub>A<sub>3</sub> (A = S, Se, Te) compounds, the calculated optical conductivity show prominent peak corresponding to the occurrence of optical conduction at energies 3.36 eV, 2.65 eV and 2.02 eV respectively. Calculated optical results support the results deduced from band structures and density of states spectra. Optical properties and dielectric behavior suggest that the Bi<sub>2</sub>S<sub>3</sub> compound has suitable band gap and has potential to use for photovoltaic applications while Bi<sub>2</sub>A<sub>3</sub> (A = Se, Te) compounds could be used in infrared detectors and other optical devices. Calculated thermal properties reveal that the Bi<sub>2</sub>A<sub>3</sub> (A = S, Se, Te) chalcogenides could be potential materials for thermoelectric applications.</p></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"393 ","pages":"Article 115669"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038109824002461","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
Structural, electronic, optical, mechanical, thermoelectric and dielectric properties of binary Bi2A3 (A = S, Se, Te) chalcogenide semiconductors are studied by first-principles approach. Bismuth sulfide (Bi2S3) is found to be structurally stable in orthorhombic structure while bismuth selenide (Bi2Se3) and bismuth telluride (Bi2Te3) are stable in trigonal structure. Calculated mechanical properties reveal that all three Bi2A3 (A = S, Se, Te) compounds fulfil the mechanical stability criteria. Band structure calculations reveal that the Bi2S3 exhibits direct optical band gap (Eg = 1. 58 eV) which lies in the near-infrared (NIR) region, while the calculated Eg of Bi2Se3 and Bi2Te3 are found to be 0.53 eV and 0.35 eV, respectively lying in the far-infrared region. For Bi2S3 and Bi2Se3 compounds, the calculated dielectric properties show strong anisotropic behavior, while negligible anisotropic dielectric behavior is observed for Bi2Te3. Calculated optical properties show that all three Bi2A3 compounds possess high absorption coefficient (> 104 cm−1). For all three Bi2A3 (A = S, Se, Te) compounds, the calculated optical conductivity show prominent peak corresponding to the occurrence of optical conduction at energies 3.36 eV, 2.65 eV and 2.02 eV respectively. Calculated optical results support the results deduced from band structures and density of states spectra. Optical properties and dielectric behavior suggest that the Bi2S3 compound has suitable band gap and has potential to use for photovoltaic applications while Bi2A3 (A = Se, Te) compounds could be used in infrared detectors and other optical devices. Calculated thermal properties reveal that the Bi2A3 (A = S, Se, Te) chalcogenides could be potential materials for thermoelectric applications.
期刊介绍:
Solid State Communications is an international medium for the publication of short communications and original research articles on significant developments in condensed matter science, giving scientists immediate access to important, recently completed work. The journal publishes original experimental and theoretical research on the physical and chemical properties of solids and other condensed systems and also on their preparation. The submission of manuscripts reporting research on the basic physics of materials science and devices, as well as of state-of-the-art microstructures and nanostructures, is encouraged.
A coherent quantitative treatment emphasizing new physics is expected rather than a simple accumulation of experimental data. Consistent with these aims, the short communications should be kept concise and short, usually not longer than six printed pages. The number of figures and tables should also be kept to a minimum. Solid State Communications now also welcomes original research articles without length restrictions.
The Fast-Track section of Solid State Communications is the venue for very rapid publication of short communications on significant developments in condensed matter science. The goal is to offer the broad condensed matter community quick and immediate access to publish recently completed papers in research areas that are rapidly evolving and in which there are developments with great potential impact.