Relation-aware deep neural network enables more efficient biomedical knowledge acquisition from massive literature

Chenyang Song , Zheni Zeng , Changyao Tian , Kuai Li , Yuan Yao , Suncong Zheng , Zhiyuan Liu , Maosong Sun
{"title":"Relation-aware deep neural network enables more efficient biomedical knowledge acquisition from massive literature","authors":"Chenyang Song ,&nbsp;Zheni Zeng ,&nbsp;Changyao Tian ,&nbsp;Kuai Li ,&nbsp;Yuan Yao ,&nbsp;Suncong Zheng ,&nbsp;Zhiyuan Liu ,&nbsp;Maosong Sun","doi":"10.1016/j.aiopen.2024.08.002","DOIUrl":null,"url":null,"abstract":"<div><p>Biomedical knowledge is typically organized in a relational scheme, such as chemical-disease relation, gene-disease relation, and gene-pathway relation. Biomedical scientists heavily rely on search engines to acquire up-to-date relational knowledge from massive biomedical articles. The navigation efficiency of the retrieval process, however, is significantly restricted by keyword matching techniques unaware of the biomedical relations of these keywords in articles. To bridge the gap between existing retrieval techniques and practical access demands for relational knowledge, we present a novel framework, <strong>Bio</strong>medical <strong>R</strong>elation-<strong>A</strong>ware <strong>D</strong>ocument <strong>R</strong>anking (BioRADR), capable of retrieving articles expressing specific relations with respect to the queried entity pair. Based on a deep neural network, BioRADR can be trained from large-scale data automatically annotated via distant supervision, and empirical evaluation reveals that it outperforms the strongest baseline by over 8 points in NDCG@1. We implement an online system (<span><span>http://bioradr.ai.thunlp.org/</span><svg><path></path></svg></span>) based on BioRADR, enabling more efficient relation-oriented retrieval of biomedical articles.</p></div>","PeriodicalId":100068,"journal":{"name":"AI Open","volume":"5 ","pages":"Pages 104-114"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666651024000123/pdfft?md5=0371d6da4f7cdd9c7adbcc0dac99a13d&pid=1-s2.0-S2666651024000123-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666651024000123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Biomedical knowledge is typically organized in a relational scheme, such as chemical-disease relation, gene-disease relation, and gene-pathway relation. Biomedical scientists heavily rely on search engines to acquire up-to-date relational knowledge from massive biomedical articles. The navigation efficiency of the retrieval process, however, is significantly restricted by keyword matching techniques unaware of the biomedical relations of these keywords in articles. To bridge the gap between existing retrieval techniques and practical access demands for relational knowledge, we present a novel framework, Biomedical Relation-Aware Document Ranking (BioRADR), capable of retrieving articles expressing specific relations with respect to the queried entity pair. Based on a deep neural network, BioRADR can be trained from large-scale data automatically annotated via distant supervision, and empirical evaluation reveals that it outperforms the strongest baseline by over 8 points in NDCG@1. We implement an online system (http://bioradr.ai.thunlp.org/) based on BioRADR, enabling more efficient relation-oriented retrieval of biomedical articles.

关系感知深度神经网络让从海量文献中获取生物医学知识更高效
生物医学知识通常采用关系式组织,如化学-疾病关系、基因-疾病关系和基因-途径关系。生物医学家严重依赖搜索引擎从海量生物医学文章中获取最新的关系知识。然而,由于关键词匹配技术不了解这些关键词在文章中的生物医学关系,检索过程的导航效率受到很大限制。为了弥补现有检索技术与关系知识实际访问需求之间的差距,我们提出了一个新颖的框架--生物医学关系感知文档排名(BioRADR),它能够检索表达与被查询实体对的特定关系的文章。BioRADR 基于深度神经网络,可以通过远距离监督自动注释的大规模数据进行训练,经验评估显示,它在 NDCG@1 中的表现比最强基线高出 8 分以上。我们实现了一个基于 BioRADR 的在线系统 (http://bioradr.ai.thunlp.org/),使面向关系的生物医学文章检索更加高效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
45.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信