{"title":"Electronic properties of InSe/CNT heterojunctions with the modulation of electric field and vacancy defects","authors":"","doi":"10.1016/j.commatsci.2024.113339","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate van der Waals (vdW) heterojunctions by combining InSe and zigzag carbon nanotubes (CNT(n,0)) by first-principle calculations. When n ranges from 5 to 7, The heterojunctions show n-type Schottky contact. However, for n of 8, 9, and 11, the heterojunctions still retain the characteristic of semiconductors with bandgaps. The metallized InSe/CNT(10,0) heterojunction has the most amount of charge transfer and the highest tunneling probability. Ohmic contact can be formed in InSe/CNT(n,0) (n = 5–7) heterojunctions under the external electric field. The charge transfer is enhanced and Schottky barrier heights are significantly reduced in heterojunctions with Se vacancy defect. In vacancy defect causes the disappearance of Schottky barrier because of metallization of InSe and more charge transfer than Se vacancy defect in InSe/CNT. Our findings provide a direction for the application of InSe/CNT in tunable nanoelectronic devices.</p></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624005603","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate van der Waals (vdW) heterojunctions by combining InSe and zigzag carbon nanotubes (CNT(n,0)) by first-principle calculations. When n ranges from 5 to 7, The heterojunctions show n-type Schottky contact. However, for n of 8, 9, and 11, the heterojunctions still retain the characteristic of semiconductors with bandgaps. The metallized InSe/CNT(10,0) heterojunction has the most amount of charge transfer and the highest tunneling probability. Ohmic contact can be formed in InSe/CNT(n,0) (n = 5–7) heterojunctions under the external electric field. The charge transfer is enhanced and Schottky barrier heights are significantly reduced in heterojunctions with Se vacancy defect. In vacancy defect causes the disappearance of Schottky barrier because of metallization of InSe and more charge transfer than Se vacancy defect in InSe/CNT. Our findings provide a direction for the application of InSe/CNT in tunable nanoelectronic devices.
期刊介绍:
The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.