L2 error estimates of unsymmetric RBF collocation for second order elliptic boundary value problems

IF 1.4 Q2 MATHEMATICS, APPLIED
Zhiyong Liu, Qiuyan Xu
{"title":"L2 error estimates of unsymmetric RBF collocation for second order elliptic boundary value problems","authors":"Zhiyong Liu,&nbsp;Qiuyan Xu","doi":"10.1016/j.rinam.2024.100495","DOIUrl":null,"url":null,"abstract":"<div><p>The paper proves convergence of unsymmetric radial basis functions (RBFs) collocation for second order elliptic boundary value problems on the bounded domains. By using Schaback’s linear discretization theory, <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> error is obtained based on the kernel-based trial spaces generated by the compactly supported radial basis functions. The present theory covers a wide range of kernel-based trial spaces including stationary and non-stationary approximation. The convergence rates depend on the regularity of the solution, the smoothness of the computing domain, and the approximation of scaled kernel-based spaces. Some numerical examples are added for illustration.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"23 ","pages":"Article 100495"},"PeriodicalIF":1.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000657/pdfft?md5=eaea0d98bacd417b2b7c2c34ff3de85d&pid=1-s2.0-S2590037424000657-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The paper proves convergence of unsymmetric radial basis functions (RBFs) collocation for second order elliptic boundary value problems on the bounded domains. By using Schaback’s linear discretization theory, L2 error is obtained based on the kernel-based trial spaces generated by the compactly supported radial basis functions. The present theory covers a wide range of kernel-based trial spaces including stationary and non-stationary approximation. The convergence rates depend on the regularity of the solution, the smoothness of the computing domain, and the approximation of scaled kernel-based spaces. Some numerical examples are added for illustration.

二阶椭圆边界值问题的非对称 RBF 拼合的 L2 误差估计
本文证明了有界域上二阶椭圆边界值问题的非对称径向基函数(RBFs)配准的收敛性。通过使用 Schaback 的线性离散化理论,基于紧凑支撑的径向基函数生成的基于核的试验空间得到了 L2 误差。本理论涵盖了广泛的基于核的试验空间,包括静态和非静态近似。收敛率取决于解的正则性、计算域的平滑度以及基于缩放核的空间逼近。为了说明问题,还添加了一些数值示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信