Global and local hypergraph learning method with semantic enhancement for POI recommendation

IF 7.4 1区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jun Zeng , Hongjin Tao , Haoran Tang , Junhao Wen , Min Gao
{"title":"Global and local hypergraph learning method with semantic enhancement for POI recommendation","authors":"Jun Zeng ,&nbsp;Hongjin Tao ,&nbsp;Haoran Tang ,&nbsp;Junhao Wen ,&nbsp;Min Gao","doi":"10.1016/j.ipm.2024.103868","DOIUrl":null,"url":null,"abstract":"<div><p>The deep semantic information mining extracts deep semantic features from textual data and effectively utilizes the world knowledge embedded in these features, so it is widely researched in recommendation tasks. In spite of the extensive utilization of contextual information in prior Point-of-Interest research, the insufficient and non-informative textual content has led to the neglect of deep semantic study. Besides, effectively integrating the deep semantic information into the trajectory modeling process is also an open question for further exploration. Therefore, this paper proposes HyperSE, to leverage prompt engineering and pre-trained language models for deep semantic enhancement. Besides, HyperSE effectively extracts higher-order collaborative signals from global and local hypergraphs, seamlessly integrating topological and semantic information to enhance trajectory modeling. Experimental results show that HyperSE outperforms the strong baseline, demonstrating the effectiveness of the deep semantic information and the model’s efficiency.</p></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":null,"pages":null},"PeriodicalIF":7.4000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0306457324002279/pdfft?md5=328e43038a8c794bb1c90f66aafb0929&pid=1-s2.0-S0306457324002279-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457324002279","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The deep semantic information mining extracts deep semantic features from textual data and effectively utilizes the world knowledge embedded in these features, so it is widely researched in recommendation tasks. In spite of the extensive utilization of contextual information in prior Point-of-Interest research, the insufficient and non-informative textual content has led to the neglect of deep semantic study. Besides, effectively integrating the deep semantic information into the trajectory modeling process is also an open question for further exploration. Therefore, this paper proposes HyperSE, to leverage prompt engineering and pre-trained language models for deep semantic enhancement. Besides, HyperSE effectively extracts higher-order collaborative signals from global and local hypergraphs, seamlessly integrating topological and semantic information to enhance trajectory modeling. Experimental results show that HyperSE outperforms the strong baseline, demonstrating the effectiveness of the deep semantic information and the model’s efficiency.

用于 POI 推荐的全局和局部超图学习方法与语义增强功能
深层语义信息挖掘从文本数据中提取深层语义特征,并有效利用这些特征中蕴含的世界知识,因此在推荐任务中被广泛研究。尽管在以往的兴趣点研究中,上下文信息得到了广泛的利用,但由于文本内容的不足和非信息性,导致了对深层语义研究的忽视。此外,如何有效地将深层语义信息整合到轨迹建模过程中也是一个有待进一步探索的问题。因此,本文提出了 HyperSE,利用提示工程和预训练语言模型进行深度语义增强。此外,HyperSE 还能有效地从全局和局部超图中提取高阶协作信号,无缝整合拓扑和语义信息以增强轨迹建模。实验结果表明,HyperSE 的性能优于强基线,证明了深度语义信息的有效性和模型的高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Processing & Management
Information Processing & Management 工程技术-计算机:信息系统
CiteScore
17.00
自引率
11.60%
发文量
276
审稿时长
39 days
期刊介绍: Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing. We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信