Transformations of probability distributions

IF 0.9 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Fabian Frei , Peter Rossmanith
{"title":"Transformations of probability distributions","authors":"Fabian Frei ,&nbsp;Peter Rossmanith","doi":"10.1016/j.tcs.2024.114786","DOIUrl":null,"url":null,"abstract":"<div><p>Almost all of computer science is concerned with transformations of information in the form of strings. We initiate the study of a neglected transformation type, namely transformations between probability distributions. We begin by examining the deceivingly simple-looking case of Bernoulli distributions and procedures to transform them.</p><p>A <em>p</em>-coin is a coin that, whenever tossed, lands heads up with probability <em>p</em> and tails up with probability <span><math><mn>1</mn><mo>−</mo><mi>p</mi></math></span>. A neat trick due to von Neumann allows us to simulate a 1/2-coin with any <em>p</em>-coin for an arbitrary unknown <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. We show how to apply this trick to simulate a <em>q</em>-coin for an arbitrary computable <span><math><mi>q</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. In contrast, it is impossible to simulate a <em>q</em>-coin with a noncomputable <em>q</em>.</p><p>More generally, we are interested in what transformations between probability distributions are feasible. Is it possible to simulate a <span><math><mi>p</mi><mo>/</mo><mn>2</mn></math></span>-coin with a <em>p</em>-coin for unknown <em>p</em>? How about 2<em>p</em> or <span><math><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>? We attempt to characterize the feasible transformations. For example, we show how to transform a <em>p</em>-coin into an <span><math><mi>f</mi><mo>(</mo><mi>p</mi><mo>)</mo></math></span>-coin where any finite number of pairs <span><math><mo>(</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><mi>f</mi><mo>(</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><mo>)</mo></math></span> of non-zero, non-one probabilities is prescribed, and that it is impossible to do the same for an infinite number of pairs. We also examine which probability distributions are feasible to approximate to arbitrary precision, showing that this is impossible for discontinuous ones but feasible for most but not all remaining ones.</p></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1018 ","pages":"Article 114786"},"PeriodicalIF":0.9000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397524004031","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Almost all of computer science is concerned with transformations of information in the form of strings. We initiate the study of a neglected transformation type, namely transformations between probability distributions. We begin by examining the deceivingly simple-looking case of Bernoulli distributions and procedures to transform them.

A p-coin is a coin that, whenever tossed, lands heads up with probability p and tails up with probability 1p. A neat trick due to von Neumann allows us to simulate a 1/2-coin with any p-coin for an arbitrary unknown p(0,1). We show how to apply this trick to simulate a q-coin for an arbitrary computable q(0,1). In contrast, it is impossible to simulate a q-coin with a noncomputable q.

More generally, we are interested in what transformations between probability distributions are feasible. Is it possible to simulate a p/2-coin with a p-coin for unknown p? How about 2p or p2? We attempt to characterize the feasible transformations. For example, we show how to transform a p-coin into an f(p)-coin where any finite number of pairs (pi,f(pi)) of non-zero, non-one probabilities is prescribed, and that it is impossible to do the same for an infinite number of pairs. We also examine which probability distributions are feasible to approximate to arbitrary precision, showing that this is impossible for discontinuous ones but feasible for most but not all remaining ones.

概率分布的变换
几乎所有的计算机科学都与字符串形式的信息变换有关。我们开始研究一种被忽视的变换类型,即概率分布之间的变换。我们首先研究伯努利分布这种看似简单的情况,以及对它们进行转换的程序。P 硬币是一种硬币,每次抛出时,正面向上的概率为 p,反面向上的概率为 1-p。冯-诺依曼(von Neumann)提出了一个巧妙的技巧,让我们可以用任意未知数 p∈(0,1)的任意 p-coin 来模拟 1/2-coin 。我们将展示如何应用这一技巧来模拟任意可计算 q∈(0,1)的 q 硬币。与此相反,用不可计算的 q 来模拟 q 币是不可能的。更广泛地说,我们感兴趣的是概率分布之间的哪些变换是可行的。对于未知的 p,能否用 p 币模拟 p/2 币?2p 或 p2 呢?我们试图描述可行变换的特征。例如,我们展示了如何将 p 硬币转换为 f(p)硬币,其中规定了任何有限数量的非零、非一概率对 (pi,f(pi)),而不可能对无限数量的概率对进行同样的转换。我们还研究了哪些概率分布可以近似到任意精度,结果表明不连续的概率分布不可能近似到任意精度,但大多数剩余概率分布可以近似到任意精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信