Jianning Chi, Zhiyi Sun, Liuyi Meng, Siqi Wang, Xiaosheng Yu, Xiaolin Wei, Bin Yang
{"title":"Low-dose CT image super-resolution with noise suppression based on prior degradation estimator and self-guidance mechanism.","authors":"Jianning Chi, Zhiyi Sun, Liuyi Meng, Siqi Wang, Xiaosheng Yu, Xiaolin Wei, Bin Yang","doi":"10.1109/TMI.2024.3454268","DOIUrl":null,"url":null,"abstract":"<p><p>The anatomies in low-dose computer tomography (LDCT) are usually distorted during the zooming-in observation process due to the small amount of quantum. Super-resolution (SR) methods have been proposed to enhance qualities of LDCT images as post-processing approaches without increasing radiation damage to patients, but suffered from incorrect prediction of degradation information and incomplete leverage of internal connections within the 3D CT volume, resulting in the imbalance between noise removal and detail sharpening in the super-resolution results. In this paper, we propose a novel LDCT SR network where the degradation information self-parsed from the LDCT slice and the 3D anatomical information captured from the LDCT volume are integrated to guide the backbone network. The prior degradation estimator (PDE) is proposed following the contrastive learning strategy to estimate the degradation features in the LDCT images without paired low-normal dose CT images. The self-guidance fusion module (SGFM) is designed to capture anatomical features with internal 3D consistencies between the squashed images along the coronal, sagittal, and axial views of the CT volume. Finally, the features representing degradation and anatomical structures are integrated to recover the CT images with higher resolutions. We apply the proposed method to the 2016 NIH-AAPM Mayo Clinic LDCT Grand Challenge dataset and our collected LDCT dataset to evaluate its ability to recover LDCT images. Experimental results illustrate the superiority of our network concerning quantitative metrics and qualitative observations, demonstrating its potential in recovering detail-sharp and noise-free CT images with higher resolutions from the practical LDCT images.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMI.2024.3454268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The anatomies in low-dose computer tomography (LDCT) are usually distorted during the zooming-in observation process due to the small amount of quantum. Super-resolution (SR) methods have been proposed to enhance qualities of LDCT images as post-processing approaches without increasing radiation damage to patients, but suffered from incorrect prediction of degradation information and incomplete leverage of internal connections within the 3D CT volume, resulting in the imbalance between noise removal and detail sharpening in the super-resolution results. In this paper, we propose a novel LDCT SR network where the degradation information self-parsed from the LDCT slice and the 3D anatomical information captured from the LDCT volume are integrated to guide the backbone network. The prior degradation estimator (PDE) is proposed following the contrastive learning strategy to estimate the degradation features in the LDCT images without paired low-normal dose CT images. The self-guidance fusion module (SGFM) is designed to capture anatomical features with internal 3D consistencies between the squashed images along the coronal, sagittal, and axial views of the CT volume. Finally, the features representing degradation and anatomical structures are integrated to recover the CT images with higher resolutions. We apply the proposed method to the 2016 NIH-AAPM Mayo Clinic LDCT Grand Challenge dataset and our collected LDCT dataset to evaluate its ability to recover LDCT images. Experimental results illustrate the superiority of our network concerning quantitative metrics and qualitative observations, demonstrating its potential in recovering detail-sharp and noise-free CT images with higher resolutions from the practical LDCT images.