{"title":"On the Weierstraß form of infinite-dimensional differential algebraic equations.","authors":"Mehmet Erbay, Birgit Jacob, Kirsten Morris","doi":"10.1007/s00028-024-01003-3","DOIUrl":null,"url":null,"abstract":"<p><p>The solvability for infinite-dimensional differential algebraic equations possessing a resolvent index and a Weierstraß form is studied. In particular, the concept of integrated semigroups is used to determine a subset on which solutions exist and are unique. This information is later used for a important class of systems, namely, port-Hamiltonian differential algebraic equations.</p>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369006/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolution Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00028-024-01003-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The solvability for infinite-dimensional differential algebraic equations possessing a resolvent index and a Weierstraß form is studied. In particular, the concept of integrated semigroups is used to determine a subset on which solutions exist and are unique. This information is later used for a important class of systems, namely, port-Hamiltonian differential algebraic equations.
期刊介绍:
The Journal of Evolution Equations (JEE) publishes high-quality, peer-reviewed papers on equations dealing with time dependent systems and ranging from abstract theory to concrete applications.
Research articles should contain new and important results. Survey articles on recent developments are also considered as important contributions to the field.
Particular topics covered by the journal are:
Linear and Nonlinear Semigroups
Parabolic and Hyperbolic Partial Differential Equations
Reaction Diffusion Equations
Deterministic and Stochastic Control Systems
Transport and Population Equations
Volterra Equations
Delay Equations
Stochastic Processes and Dirichlet Forms
Maximal Regularity and Functional Calculi
Asymptotics and Qualitative Theory of Linear and Nonlinear Evolution Equations
Evolution Equations in Mathematical Physics
Elliptic Operators