On the Weierstraß form of infinite-dimensional differential algebraic equations.

IF 1.1 3区 数学 Q1 MATHEMATICS
Journal of Evolution Equations Pub Date : 2024-01-01 Epub Date: 2024-09-02 DOI:10.1007/s00028-024-01003-3
Mehmet Erbay, Birgit Jacob, Kirsten Morris
{"title":"On the Weierstraß form of infinite-dimensional differential algebraic equations.","authors":"Mehmet Erbay, Birgit Jacob, Kirsten Morris","doi":"10.1007/s00028-024-01003-3","DOIUrl":null,"url":null,"abstract":"<p><p>The solvability for infinite-dimensional differential algebraic equations possessing a resolvent index and a Weierstraß form is studied. In particular, the concept of integrated semigroups is used to determine a subset on which solutions exist and are unique. This information is later used for a important class of systems, namely, port-Hamiltonian differential algebraic equations.</p>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369006/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolution Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00028-024-01003-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The solvability for infinite-dimensional differential algebraic equations possessing a resolvent index and a Weierstraß form is studied. In particular, the concept of integrated semigroups is used to determine a subset on which solutions exist and are unique. This information is later used for a important class of systems, namely, port-Hamiltonian differential algebraic equations.

论无穷维微分代数方程的 Weierstraß 形式。
研究了具有解析指数和 Weierstraß 形式的无穷维微分代数方程的可解性。特别是,利用积分半群的概念确定了解存在且唯一的子集。这一信息随后被用于一类重要的系统,即端口-哈密尔顿微分代数方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
7.10%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Journal of Evolution Equations (JEE) publishes high-quality, peer-reviewed papers on equations dealing with time dependent systems and ranging from abstract theory to concrete applications. Research articles should contain new and important results. Survey articles on recent developments are also considered as important contributions to the field. Particular topics covered by the journal are: Linear and Nonlinear Semigroups Parabolic and Hyperbolic Partial Differential Equations Reaction Diffusion Equations Deterministic and Stochastic Control Systems Transport and Population Equations Volterra Equations Delay Equations Stochastic Processes and Dirichlet Forms Maximal Regularity and Functional Calculi Asymptotics and Qualitative Theory of Linear and Nonlinear Evolution Equations Evolution Equations in Mathematical Physics Elliptic Operators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信