Elnaz Sheikhian, Majid Ghoshuni, Mahdi Azarnoosh, Mohammad Mahdi Khalilzadeh
{"title":"Enhancing Arousal Level Detection in EEG Signals through Genetic Algorithm-based Feature Selection and Fast Bit Hopping.","authors":"Elnaz Sheikhian, Majid Ghoshuni, Mahdi Azarnoosh, Mohammad Mahdi Khalilzadeh","doi":"10.4103/jmss.jmss_65_23","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study explores a novel approach to detecting arousal levels through the analysis of electroencephalography (EEG) signals. Leveraging the Faller database with data from 18 healthy participants, we employ a 64-channel EEG system.</p><p><strong>Methods: </strong>The approach we employ entails the extraction of ten frequency characteristics from every channel, culminating in a feature vector of 640 dimensions for each signal instance. To enhance classification accuracy, we employ a genetic algorithm for feature selection, treating it as a multiobjective optimization task. The approach utilizes fast bit hopping for efficiency, overcoming traditional bit-string limitations. A hybrid operator expedites algorithm convergence, and a solution selection strategy identifies the most suitable feature subset.</p><p><strong>Results: </strong>Experimental results demonstrate the method's effectiveness in detecting arousal levels across diverse states, with improvements in accuracy, sensitivity, and specificity. In scenario one, the proposed method achieves an average accuracy, sensitivity, and specificity of 93.11%, 98.37%, and 99.14%, respectively. In scenario two, the averages stand at 81.35%, 88.65%, and 84.64%.</p><p><strong>Conclusions: </strong>The obtained results indicate that the proposed method has a high capability of detecting arousal levels in different scenarios. In addition, the advantage of employing the proposed feature reduction method has been demonstrated.</p>","PeriodicalId":37680,"journal":{"name":"Journal of Medical Signals & Sensors","volume":"14 ","pages":"20"},"PeriodicalIF":1.3000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373797/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Signals & Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jmss.jmss_65_23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: This study explores a novel approach to detecting arousal levels through the analysis of electroencephalography (EEG) signals. Leveraging the Faller database with data from 18 healthy participants, we employ a 64-channel EEG system.
Methods: The approach we employ entails the extraction of ten frequency characteristics from every channel, culminating in a feature vector of 640 dimensions for each signal instance. To enhance classification accuracy, we employ a genetic algorithm for feature selection, treating it as a multiobjective optimization task. The approach utilizes fast bit hopping for efficiency, overcoming traditional bit-string limitations. A hybrid operator expedites algorithm convergence, and a solution selection strategy identifies the most suitable feature subset.
Results: Experimental results demonstrate the method's effectiveness in detecting arousal levels across diverse states, with improvements in accuracy, sensitivity, and specificity. In scenario one, the proposed method achieves an average accuracy, sensitivity, and specificity of 93.11%, 98.37%, and 99.14%, respectively. In scenario two, the averages stand at 81.35%, 88.65%, and 84.64%.
Conclusions: The obtained results indicate that the proposed method has a high capability of detecting arousal levels in different scenarios. In addition, the advantage of employing the proposed feature reduction method has been demonstrated.
期刊介绍:
JMSS is an interdisciplinary journal that incorporates all aspects of the biomedical engineering including bioelectrics, bioinformatics, medical physics, health technology assessment, etc. Subject areas covered by the journal include: - Bioelectric: Bioinstruments Biosensors Modeling Biomedical signal processing Medical image analysis and processing Medical imaging devices Control of biological systems Neuromuscular systems Cognitive sciences Telemedicine Robotic Medical ultrasonography Bioelectromagnetics Electrophysiology Cell tracking - Bioinformatics and medical informatics: Analysis of biological data Data mining Stochastic modeling Computational genomics Artificial intelligence & fuzzy Applications Medical softwares Bioalgorithms Electronic health - Biophysics and medical physics: Computed tomography Radiation therapy Laser therapy - Education in biomedical engineering - Health technology assessment - Standard in biomedical engineering.