{"title":"Human keratinocyte response to 4,4'-methylene diphenyl diisocyanate-glutathione conjugate exposure.","authors":"Brandon F Law, Chen-Chung Lin, Justin M Hettick","doi":"10.1080/00498254.2024.2401493","DOIUrl":null,"url":null,"abstract":"<p><p>Workplace exposure to diisocyanates like 4,4'-methylene diphenyl diisocyanate can cause occupational asthma (MDI-OA), and the underlying biological pathways are still being researched.Although uncertainty remains, evidence supports the hypothesis that dermal exposure to MDI plays an important role in the development of MDI-OA.Gene expression, proteomics, and informatics tools were utilised to characterise changes in expression of RNA and protein in cultured human HEKa keratinocyte cells following exposure to conjugates of MDI with glutathione (MDI-GSH).RT-qPCR analysis using a panel of 39 candidate primers demonstrated 9 candidate genes upregulated and 30 unchanged.HPLC-MS/MS analysis of HEKa cell lysate identified 18 540 proteins across all samples 60 proteins demonstrate statistically significant differential expression in exposed cells, some of which suggest activation of immune and inflammatory pathways.The results support the hypothesis that dermal exposures have the potential to play an important role in the development of MDI-OA. Furthermore, proteomic and gene expression data suggest multiple immune (adaptive and innate) and inflammatory pathways may be involved in the development of MDI-OA.</p>","PeriodicalId":23812,"journal":{"name":"Xenobiotica","volume":" ","pages":"749-758"},"PeriodicalIF":1.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Xenobiotica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/00498254.2024.2401493","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/7 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Workplace exposure to diisocyanates like 4,4'-methylene diphenyl diisocyanate can cause occupational asthma (MDI-OA), and the underlying biological pathways are still being researched.Although uncertainty remains, evidence supports the hypothesis that dermal exposure to MDI plays an important role in the development of MDI-OA.Gene expression, proteomics, and informatics tools were utilised to characterise changes in expression of RNA and protein in cultured human HEKa keratinocyte cells following exposure to conjugates of MDI with glutathione (MDI-GSH).RT-qPCR analysis using a panel of 39 candidate primers demonstrated 9 candidate genes upregulated and 30 unchanged.HPLC-MS/MS analysis of HEKa cell lysate identified 18 540 proteins across all samples 60 proteins demonstrate statistically significant differential expression in exposed cells, some of which suggest activation of immune and inflammatory pathways.The results support the hypothesis that dermal exposures have the potential to play an important role in the development of MDI-OA. Furthermore, proteomic and gene expression data suggest multiple immune (adaptive and innate) and inflammatory pathways may be involved in the development of MDI-OA.
期刊介绍:
Xenobiotica covers seven main areas, including:General Xenobiochemistry, including in vitro studies concerned with the metabolism, disposition and excretion of drugs, and other xenobiotics, as well as the structure, function and regulation of associated enzymesClinical Pharmacokinetics and Metabolism, covering the pharmacokinetics and absorption, distribution, metabolism and excretion of drugs and other xenobiotics in manAnimal Pharmacokinetics and Metabolism, covering the pharmacokinetics, and absorption, distribution, metabolism and excretion of drugs and other xenobiotics in animalsPharmacogenetics, defined as the identification and functional characterisation of polymorphic genes that encode xenobiotic metabolising enzymes and transporters that may result in altered enzymatic, cellular and clinical responses to xenobioticsMolecular Toxicology, concerning the mechanisms of toxicity and the study of toxicology of xenobiotics at the molecular levelXenobiotic Transporters, concerned with all aspects of the carrier proteins involved in the movement of xenobiotics into and out of cells, and their impact on pharmacokinetic behaviour in animals and manTopics in Xenobiochemistry, in the form of reviews and commentaries are primarily intended to be a critical analysis of the issue, wherein the author offers opinions on the relevance of data or of a particular experimental approach or methodology