Nuria Sánchez-Fernández , Laura Gómez-Acero , Anna Castañé , Albert Adell , Leticia Campa , Jordi Bonaventura , Verónica Brito , Silvia Ginés , Francisco Queiróz , Henrique Silva , João Pedro Lopes , Cátia R. Lopes , Marija Radošević , Xavier Gasull , Rodrigo A. Cunha , Attila Köfalvi , Samira G. Ferreira , Francisco Ciruela , Ester Aso
{"title":"A combination of Δ9-tetrahydrocannabinol and cannabidiol modulates glutamate dynamics in the hippocampus of an animal model of Alzheimer's disease","authors":"Nuria Sánchez-Fernández , Laura Gómez-Acero , Anna Castañé , Albert Adell , Leticia Campa , Jordi Bonaventura , Verónica Brito , Silvia Ginés , Francisco Queiróz , Henrique Silva , João Pedro Lopes , Cátia R. Lopes , Marija Radošević , Xavier Gasull , Rodrigo A. Cunha , Attila Köfalvi , Samira G. Ferreira , Francisco Ciruela , Ester Aso","doi":"10.1016/j.neurot.2024.e00439","DOIUrl":null,"url":null,"abstract":"<div><div>A combination of Δ<sup>9</sup>-tetrahydrocannabinol (Δ<sup>9</sup>-THC) and cannabidiol (CBD) at non-psychoactive doses was previously demonstrated to reduce cognitive decline in APP/PS1 mice, an animal model of Alzheimer's disease (AD). However, the neurobiological substrates underlying these therapeutic properties of Δ<sup>9</sup>-THC and CBD are not fully understood. Considering that dysregulation of glutamatergic activity contributes to cognitive impairment in AD, the present study evaluates the hypothesis that the combination of these two natural cannabinoids might reverse the alterations in glutamate dynamics within the hippocampus of this animal model of AD. Interestingly, our findings reveal that chronic treatment with Δ<sup>9</sup>-THC and CBD, but not with any of them alone, reduces extracellular glutamate levels and the basal excitability of the hippocampus in APP/PS1 mice. These effects are not related to significant changes in the function and structure of glutamate synapses, as no relevant changes in synaptic plasticity, glutamate signaling or in the levels of key components of these synapses were observed in cannabinoid-treated mice. Our data instead indicate that these cannabinoid effects are associated with the control of glutamate uptake and/or to the regulation of the hippocampal network. Taken together, these results support the potential therapeutic properties of combining these natural cannabinoids against the excitotoxicity that occurs in AD brains.</div></div>","PeriodicalId":19159,"journal":{"name":"Neurotherapeutics","volume":"21 5","pages":"Article e00439"},"PeriodicalIF":5.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotherapeutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878747924001260","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A combination of Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) at non-psychoactive doses was previously demonstrated to reduce cognitive decline in APP/PS1 mice, an animal model of Alzheimer's disease (AD). However, the neurobiological substrates underlying these therapeutic properties of Δ9-THC and CBD are not fully understood. Considering that dysregulation of glutamatergic activity contributes to cognitive impairment in AD, the present study evaluates the hypothesis that the combination of these two natural cannabinoids might reverse the alterations in glutamate dynamics within the hippocampus of this animal model of AD. Interestingly, our findings reveal that chronic treatment with Δ9-THC and CBD, but not with any of them alone, reduces extracellular glutamate levels and the basal excitability of the hippocampus in APP/PS1 mice. These effects are not related to significant changes in the function and structure of glutamate synapses, as no relevant changes in synaptic plasticity, glutamate signaling or in the levels of key components of these synapses were observed in cannabinoid-treated mice. Our data instead indicate that these cannabinoid effects are associated with the control of glutamate uptake and/or to the regulation of the hippocampal network. Taken together, these results support the potential therapeutic properties of combining these natural cannabinoids against the excitotoxicity that occurs in AD brains.
期刊介绍:
Neurotherapeutics® is the journal of the American Society for Experimental Neurotherapeutics (ASENT). Each issue provides critical reviews of an important topic relating to the treatment of neurological disorders written by international authorities.
The Journal also publishes original research articles in translational neuroscience including descriptions of cutting edge therapies that cross disciplinary lines and represent important contributions to neurotherapeutics for medical practitioners and other researchers in the field.
Neurotherapeutics ® delivers a multidisciplinary perspective on the frontiers of translational neuroscience, provides perspectives on current research and practice, and covers social and ethical as well as scientific issues.