{"title":"Modelling approaches to multibeam echosounders for sound field characterizationa).","authors":"Michael Smith","doi":"10.1121/10.0028338","DOIUrl":null,"url":null,"abstract":"<p><p>Concern over the impact of multibeam echosounders (MBES) on marine life has increased in recent years. A thorough impact assessment of acoustic sources requires both accurate modeling of the source and radiated sound field, and a biological assessment. The Joint Industry Program Acoustic Modelling Workshop in 2022 provided a set of verification scenarios for a deep-water MBES to compare modelling approaches and assess agreement across models. This work presents several relevant models designed to compute both the MBES beam patterns and propagated acoustic field. Key acoustic metrics used in impact assessment were calculated and compared using these models. The work confirmed that geometrical acoustics is well suited to the unique radiation patterns of MBES. Ray-tracing programs are relevant as well at short ranges and at long horizontal distances in the presence of large sound speed gradients. The estimation of cumulative sound exposure along a survey track is most often dominated by exposure to the main transmit beam of each sector. Accurate modelling of the near field was demonstrated to have a direct impact on final acoustic metrics and threshold ranges for various marine mammal hearing groups.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of America","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1121/10.0028338","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Concern over the impact of multibeam echosounders (MBES) on marine life has increased in recent years. A thorough impact assessment of acoustic sources requires both accurate modeling of the source and radiated sound field, and a biological assessment. The Joint Industry Program Acoustic Modelling Workshop in 2022 provided a set of verification scenarios for a deep-water MBES to compare modelling approaches and assess agreement across models. This work presents several relevant models designed to compute both the MBES beam patterns and propagated acoustic field. Key acoustic metrics used in impact assessment were calculated and compared using these models. The work confirmed that geometrical acoustics is well suited to the unique radiation patterns of MBES. Ray-tracing programs are relevant as well at short ranges and at long horizontal distances in the presence of large sound speed gradients. The estimation of cumulative sound exposure along a survey track is most often dominated by exposure to the main transmit beam of each sector. Accurate modelling of the near field was demonstrated to have a direct impact on final acoustic metrics and threshold ranges for various marine mammal hearing groups.
期刊介绍:
Since 1929 The Journal of the Acoustical Society of America has been the leading source of theoretical and experimental research results in the broad interdisciplinary study of sound. Subject coverage includes: linear and nonlinear acoustics; aeroacoustics, underwater sound and acoustical oceanography; ultrasonics and quantum acoustics; architectural and structural acoustics and vibration; speech, music and noise; psychology and physiology of hearing; engineering acoustics, transduction; bioacoustics, animal bioacoustics.