Zunera Khalid , Amen Shamim , Mohamed J. Saadh , Ahmed Alafnan , Mohd Alaraj , Muhammad Hassan Butt , Tehreem Ashraf
{"title":"Identification of potential inhibitors against Corynebacterium diphtheriae MtrA response regulator protein; an in-silico drug discovery approach","authors":"Zunera Khalid , Amen Shamim , Mohamed J. Saadh , Ahmed Alafnan , Mohd Alaraj , Muhammad Hassan Butt , Tehreem Ashraf","doi":"10.1016/j.jmgm.2024.108858","DOIUrl":null,"url":null,"abstract":"<div><p><em>Corynebacterium diphtheriae</em> is a multi-drug resistant bacteria responsible for the life-threatening respiratory illness, diphtheria which can lead to severe Nervous system disorders, mainly infecting the lungs, heart, and kidneys if left untreated. In the current study, <em>Corynebacterium diphtheriae</em> MtrA response regulator protein was targeted, which regulates a two-component system of bacterial pathogenesis, and initiates DNA replication and cell division. In the current study a computational approach have been described for drug development against <em>C. diphtheriae</em> infections by inhibiting MtrA protein by small molecules acting as potential inhibitors against it. Molecular docking analysis of the equilibrated MtrA protein revealed compound-0.2970, compound-0.3029, and compound-0.3016 from Asinex Library as the promising inhibitors based on their lowest binding energies (−9.8 kJ/mol, −9.2 kJ/mol, and −8.9 kJ/mol), highest gold scores (40.53, 47.41, and 48.41), drug-likeness and pharmacokinetic properties. The MD simulation studies of the identified top-ranked inhibitors at 100 ns elucidated the system stability and fluctuations in the binding pocket of MtrA protein. Molecular Dynamics Simulations of the top three docked complexes further revealed that the standard binding pocket was retained ensuring the system stability. The rearrangements of H-bonds, van der Waals, pi-pi, and solid hydrophobic interactions were also observed. The binding free energy calculations (MM/PBSA and MM/GBSA) suggested a fundamental binding capability of the ligand to the target receptor MtrA. Therefore, the current study has provided excellent candidates acting as potent inhibitors for developing therapeutic drugs against <em>C. diphtheria</em><em>e</em> infections. However, <em>in vivo</em> and <em>in vitro</em> animal experiments and accurate clinical trials are needed to validate the potential inhibitory effect of these compounds.</p></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":"133 ","pages":"Article 108858"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular graphics & modelling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S109332632400158X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Corynebacterium diphtheriae is a multi-drug resistant bacteria responsible for the life-threatening respiratory illness, diphtheria which can lead to severe Nervous system disorders, mainly infecting the lungs, heart, and kidneys if left untreated. In the current study, Corynebacterium diphtheriae MtrA response regulator protein was targeted, which regulates a two-component system of bacterial pathogenesis, and initiates DNA replication and cell division. In the current study a computational approach have been described for drug development against C. diphtheriae infections by inhibiting MtrA protein by small molecules acting as potential inhibitors against it. Molecular docking analysis of the equilibrated MtrA protein revealed compound-0.2970, compound-0.3029, and compound-0.3016 from Asinex Library as the promising inhibitors based on their lowest binding energies (−9.8 kJ/mol, −9.2 kJ/mol, and −8.9 kJ/mol), highest gold scores (40.53, 47.41, and 48.41), drug-likeness and pharmacokinetic properties. The MD simulation studies of the identified top-ranked inhibitors at 100 ns elucidated the system stability and fluctuations in the binding pocket of MtrA protein. Molecular Dynamics Simulations of the top three docked complexes further revealed that the standard binding pocket was retained ensuring the system stability. The rearrangements of H-bonds, van der Waals, pi-pi, and solid hydrophobic interactions were also observed. The binding free energy calculations (MM/PBSA and MM/GBSA) suggested a fundamental binding capability of the ligand to the target receptor MtrA. Therefore, the current study has provided excellent candidates acting as potent inhibitors for developing therapeutic drugs against C. diphtheriae infections. However, in vivo and in vitro animal experiments and accurate clinical trials are needed to validate the potential inhibitory effect of these compounds.
期刊介绍:
The Journal of Molecular Graphics and Modelling is devoted to the publication of papers on the uses of computers in theoretical investigations of molecular structure, function, interaction, and design. The scope of the journal includes all aspects of molecular modeling and computational chemistry, including, for instance, the study of molecular shape and properties, molecular simulations, protein and polymer engineering, drug design, materials design, structure-activity and structure-property relationships, database mining, and compound library design.
As a primary research journal, JMGM seeks to bring new knowledge to the attention of our readers. As such, submissions to the journal need to not only report results, but must draw conclusions and explore implications of the work presented. Authors are strongly encouraged to bear this in mind when preparing manuscripts. Routine applications of standard modelling approaches, providing only very limited new scientific insight, will not meet our criteria for publication. Reproducibility of reported calculations is an important issue. Wherever possible, we urge authors to enhance their papers with Supplementary Data, for example, in QSAR studies machine-readable versions of molecular datasets or in the development of new force-field parameters versions of the topology and force field parameter files. Routine applications of existing methods that do not lead to genuinely new insight will not be considered.