Crystal Structure of Bifidobacterium bifidum Glycoside Hydrolase Family 110 α-Galactosidase Specific for Blood Group B Antigen.

IF 1.2 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Journal of applied glycoscience Pub Date : 2024-08-20 eCollection Date: 2024-01-01 DOI:10.5458/jag.jag.JAG-2024_0005
Toma Kashima, Megumi Akama, Takura Wakinaka, Takatoshi Arakawa, Hisashi Ashida, Shinya Fushinobu
{"title":"Crystal Structure of <i>Bifidobacterium bifidum</i> Glycoside Hydrolase Family 110 α-Galactosidase Specific for Blood Group B Antigen.","authors":"Toma Kashima, Megumi Akama, Takura Wakinaka, Takatoshi Arakawa, Hisashi Ashida, Shinya Fushinobu","doi":"10.5458/jag.jag.JAG-2024_0005","DOIUrl":null,"url":null,"abstract":"<p><p>To overcome incompatibility issues and increase the possibility of blood transfusion, technologies that enable efficient conversion of A- and B-type red blood cells to the universal donor O-type is desirable. Although several blood type-converting enzymes have been identified, detailed understanding about their molecular functions is limited. α-Galactosidase from <i>Bifidobacterium bifidum</i> JCM 1254 (AgaBb), belonging to glycoside hydrolase (GH) 110 subfamily A, specifically acts on blood group B antigen. Here we present the crystal structure of AgaBb, including the catalytic GH110 domain and part of the C-terminal uncharacterized regions. Based on this structure, we deduced a possible binding mechanism of blood group B antigen to the active site. Site-directed mutagenesis confirmed that R270 and E380 recognize the fucose moiety in the B antigen. Thermal shift assay revealed that the C-terminal uncharacterized region significantly contributes to protein stability. This region is shared only among GH110 enzymes from <i>B. bifidum</i> and some <i>Ruminococcus</i> species. The elucidation of the molecular basis for the specific recognition of blood group B antigen is expected to lead to the practical application of blood group conversion enzymes in the future.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368712/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied glycoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5458/jag.jag.JAG-2024_0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

To overcome incompatibility issues and increase the possibility of blood transfusion, technologies that enable efficient conversion of A- and B-type red blood cells to the universal donor O-type is desirable. Although several blood type-converting enzymes have been identified, detailed understanding about their molecular functions is limited. α-Galactosidase from Bifidobacterium bifidum JCM 1254 (AgaBb), belonging to glycoside hydrolase (GH) 110 subfamily A, specifically acts on blood group B antigen. Here we present the crystal structure of AgaBb, including the catalytic GH110 domain and part of the C-terminal uncharacterized regions. Based on this structure, we deduced a possible binding mechanism of blood group B antigen to the active site. Site-directed mutagenesis confirmed that R270 and E380 recognize the fucose moiety in the B antigen. Thermal shift assay revealed that the C-terminal uncharacterized region significantly contributes to protein stability. This region is shared only among GH110 enzymes from B. bifidum and some Ruminococcus species. The elucidation of the molecular basis for the specific recognition of blood group B antigen is expected to lead to the practical application of blood group conversion enzymes in the future.

双歧杆菌糖苷水解酶家族 110 α-半乳糖苷酶对血型 B 抗原的特异性晶体结构。
为了克服血型不相容的问题并增加输血的可能性,我们需要能够将 A 型和 B 型红细胞有效转化为通用供血者 O 型红细胞的技术。来自双歧杆菌 JCM 1254 的 α-半乳糖苷酶(AgaBb)属于糖苷水解酶(GH)110 亚家族 A,专门作用于血型 B 抗原。在这里,我们展示了 AgaBb 的晶体结构,包括 GH110 催化结构域和部分 C 端未表征区域。根据该结构,我们推断了血型 B 抗原与活性位点的可能结合机制。定点突变证实 R270 和 E380 能识别 B 抗原中的岩藻糖分子。热转移试验显示,C-末端的未表征区域对蛋白质的稳定性有重要作用。只有来自双歧杆菌和一些反刍球菌的 GH110 酶共享该区域。阐明特异性识别血型 B 抗原的分子基础有望使血型转换酶在未来得到实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of applied glycoscience
Journal of applied glycoscience BIOCHEMISTRY & MOLECULAR BIOLOGY-
自引率
9.10%
发文量
13
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信