Yutaka Natsuaki, Andrew Leynes, Kristen Wangerin, Mahdjoub Hamdi, Abhejit Rajagopal, Paul E. Kinahan, Richard Laforest, Peder E. Z. Larson, Thomas A. Hope, Sara St. James
{"title":"Assessment of lesion insertion tool in pelvis PET/MR data with applications to attenuation correction method development","authors":"Yutaka Natsuaki, Andrew Leynes, Kristen Wangerin, Mahdjoub Hamdi, Abhejit Rajagopal, Paul E. Kinahan, Richard Laforest, Peder E. Z. Larson, Thomas A. Hope, Sara St. James","doi":"10.1002/acm2.14507","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>In modern positron emission tomography (PET) with multi-modality imaging (e.g., PET/CT and PET/MR), the attenuation correction (AC) is the single largest correction factor for image reconstruction. One way to assess AC methods and other reconstruction parameters is to utilize software-based simulation tools, such as a lesion insertion tool. Extensive validation of these simulation tools is required to ensure results of the study are clinically meaningful.</p>\n </section>\n \n <section>\n \n <h3> Purpose</h3>\n \n <p>To evaluate different PET AC methods using a synthetic lesion insertion tool that simulates lesions in a patient cohort that has both PET/MR and PET/CT images. To further demonstrate how lesion insertion tool may be used to extend knowledge of PET reconstruction parameters, including but not limited to AC.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Lesion quantitation is compared using conventional Dixon-based MR-based AC (MRAC) to that of using CT-based AC (CTAC, a “ground truth”). First, the pre-existing lesions were simulated in a similar environment; a total of 71 lesions were identified in 18 pelvic PET/MR patient images acquired with a time-of-flight simultaneous PET/MR scanner, and matched lesions were inserted contralaterally on the same axial slice. Second, synthetic lesions were inserted into four anatomic target locations in a cohort of four patients who didn't have any observed clinical lesions in the pelvis.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The matched lesion insertions resulted in unity between the lesion error ratios (mean SUVs), demonstrating that the inserted lesions successfully simulated the original lesions. In the second study, the inserted lesions had distinct characteristics by target locations and demonstrated negative max-SUV%diff trends for bone-dominant sites across the patient cohort.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>The current work demonstrates that the applied lesion insertion tool can simulate uptake in pelvic lesions and their expected SUV values, and that the lesion insertion tool can be extended to evaluate further PET reconstruction corrections and algorithms and their impact on quantitation accuracy and precision.</p>\n </section>\n </div>","PeriodicalId":14989,"journal":{"name":"Journal of Applied Clinical Medical Physics","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539964/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Clinical Medical Physics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/acm2.14507","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background
In modern positron emission tomography (PET) with multi-modality imaging (e.g., PET/CT and PET/MR), the attenuation correction (AC) is the single largest correction factor for image reconstruction. One way to assess AC methods and other reconstruction parameters is to utilize software-based simulation tools, such as a lesion insertion tool. Extensive validation of these simulation tools is required to ensure results of the study are clinically meaningful.
Purpose
To evaluate different PET AC methods using a synthetic lesion insertion tool that simulates lesions in a patient cohort that has both PET/MR and PET/CT images. To further demonstrate how lesion insertion tool may be used to extend knowledge of PET reconstruction parameters, including but not limited to AC.
Methods
Lesion quantitation is compared using conventional Dixon-based MR-based AC (MRAC) to that of using CT-based AC (CTAC, a “ground truth”). First, the pre-existing lesions were simulated in a similar environment; a total of 71 lesions were identified in 18 pelvic PET/MR patient images acquired with a time-of-flight simultaneous PET/MR scanner, and matched lesions were inserted contralaterally on the same axial slice. Second, synthetic lesions were inserted into four anatomic target locations in a cohort of four patients who didn't have any observed clinical lesions in the pelvis.
Results
The matched lesion insertions resulted in unity between the lesion error ratios (mean SUVs), demonstrating that the inserted lesions successfully simulated the original lesions. In the second study, the inserted lesions had distinct characteristics by target locations and demonstrated negative max-SUV%diff trends for bone-dominant sites across the patient cohort.
Conclusions
The current work demonstrates that the applied lesion insertion tool can simulate uptake in pelvic lesions and their expected SUV values, and that the lesion insertion tool can be extended to evaluate further PET reconstruction corrections and algorithms and their impact on quantitation accuracy and precision.
期刊介绍:
Journal of Applied Clinical Medical Physics is an international Open Access publication dedicated to clinical medical physics. JACMP welcomes original contributions dealing with all aspects of medical physics from scientists working in the clinical medical physics around the world. JACMP accepts only online submission.
JACMP will publish:
-Original Contributions: Peer-reviewed, investigations that represent new and significant contributions to the field. Recommended word count: up to 7500.
-Review Articles: Reviews of major areas or sub-areas in the field of clinical medical physics. These articles may be of any length and are peer reviewed.
-Technical Notes: These should be no longer than 3000 words, including key references.
-Letters to the Editor: Comments on papers published in JACMP or on any other matters of interest to clinical medical physics. These should not be more than 1250 (including the literature) and their publication is only based on the decision of the editor, who occasionally asks experts on the merit of the contents.
-Book Reviews: The editorial office solicits Book Reviews.
-Announcements of Forthcoming Meetings: The Editor may provide notice of forthcoming meetings, course offerings, and other events relevant to clinical medical physics.
-Parallel Opposed Editorial: We welcome topics relevant to clinical practice and medical physics profession. The contents can be controversial debate or opposed aspects of an issue. One author argues for the position and the other against. Each side of the debate contains an opening statement up to 800 words, followed by a rebuttal up to 500 words. Readers interested in participating in this series should contact the moderator with a proposed title and a short description of the topic