{"title":"Transcriptomic analysis reveals the mechanism of isorhamnetin in the treatment of diabetes mellitus erectile dysfunction","authors":"","doi":"10.1016/j.freeradbiomed.2024.08.043","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>Exploring the therapeutic effect and mechanism of isorhamnetin in the treatment of DMED.</p></div><div><h3>Methods</h3><p>Using a high glucose environment to induce endothelial cells damage in the corpus cavernosum, and combining with intervention agents such as ferroptosis inhibitors to observe the process of cell damage and repair, evaluating cell status through CCK-8 and DAPI; To establish the STZ-induced diabetes rat model and detect the erectile function and tissue changes; Perform transcriptomic sequencing on rat models and samples treated with isorhamnetin to analyze differentially expressed genes and their GO functions; Identify critical pathways by combining with the ferroptosis database; Flow cytometry was used to detect ROS and mitochondrial membrane potential, and RT-PCR was used to verify gene expression, Seahorse detects mitochondrial oxygen consumption rate, revealing the mechanism of action of isorhamnetin.</p></div><div><h3>Results</h3><p>Ferroptosis inhibitors and isorhamnetin can effectively reverse the damage of corpus cavernosum endothelial cells induced by high glucose and ferroptosis agonists. Isorhamnetin has the ability to reinstate the erectile function of diabetic rats, while enhancing the quantity of endothelial cells and refining the morphology of collagen fibers. Immunohistochemistry revealed that ferroptosis existed in the penis tissue of diabetes rats. Transcriptomic analysis showed that isorhamnetin improves gene expression in DM rats by regulating genes such as GFER, IGHM, GPX4 and HMOX1, involving multiple pathways and biological processes. Flow cytometry and RT-PCR confirmed that isorhamnetin can reduce reactive oxygen species levels, restore essential gene expression, improve mitochondrial membrane potential, and alleviate oxidative stress and ferroptosis. Seahorse detection found that isorhamnetin can restore mitochondrial oxygen consumption rate.</p></div><div><h3>Conclusion</h3><p>Isorhamnetin attenuates high glucose damage to cavernous endothelial cells by inhibiting ferroptosis and oxidative stress, restores erectile function and improves tissue morphology in diabetic rats, and its multi-pathway and multi-targeting regulatory mechanism suggests that it is promising to be an effective drug for the treatment of DMED.</p></div>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0891584924006373","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Exploring the therapeutic effect and mechanism of isorhamnetin in the treatment of DMED.
Methods
Using a high glucose environment to induce endothelial cells damage in the corpus cavernosum, and combining with intervention agents such as ferroptosis inhibitors to observe the process of cell damage and repair, evaluating cell status through CCK-8 and DAPI; To establish the STZ-induced diabetes rat model and detect the erectile function and tissue changes; Perform transcriptomic sequencing on rat models and samples treated with isorhamnetin to analyze differentially expressed genes and their GO functions; Identify critical pathways by combining with the ferroptosis database; Flow cytometry was used to detect ROS and mitochondrial membrane potential, and RT-PCR was used to verify gene expression, Seahorse detects mitochondrial oxygen consumption rate, revealing the mechanism of action of isorhamnetin.
Results
Ferroptosis inhibitors and isorhamnetin can effectively reverse the damage of corpus cavernosum endothelial cells induced by high glucose and ferroptosis agonists. Isorhamnetin has the ability to reinstate the erectile function of diabetic rats, while enhancing the quantity of endothelial cells and refining the morphology of collagen fibers. Immunohistochemistry revealed that ferroptosis existed in the penis tissue of diabetes rats. Transcriptomic analysis showed that isorhamnetin improves gene expression in DM rats by regulating genes such as GFER, IGHM, GPX4 and HMOX1, involving multiple pathways and biological processes. Flow cytometry and RT-PCR confirmed that isorhamnetin can reduce reactive oxygen species levels, restore essential gene expression, improve mitochondrial membrane potential, and alleviate oxidative stress and ferroptosis. Seahorse detection found that isorhamnetin can restore mitochondrial oxygen consumption rate.
Conclusion
Isorhamnetin attenuates high glucose damage to cavernous endothelial cells by inhibiting ferroptosis and oxidative stress, restores erectile function and improves tissue morphology in diabetic rats, and its multi-pathway and multi-targeting regulatory mechanism suggests that it is promising to be an effective drug for the treatment of DMED.
期刊介绍:
Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.