Lia D Oliveira, Jiayun Lu, Eric Erak, Adrianna A Mendes, Oluwademilade Dairo, Onur Ertunc, Ibrahim Kulac, Javier A Baena-Del Valle, Tracy Jones, Jessica L Hicks, Stephanie Glavaris, Gunes Guner, Igor D Vidal, Bruce J Trock, Uttara Joshi, Chaith Kondragunta, Saikiran Bonthu, Corinne Joshu, Nitin Singhal, Angelo M De Marzo, Tamara L Lotan
{"title":"Comparison of Pathologist and Artificial Intelligence-based Grading for Prediction of Metastatic Outcomes After Radical Prostatectomy.","authors":"Lia D Oliveira, Jiayun Lu, Eric Erak, Adrianna A Mendes, Oluwademilade Dairo, Onur Ertunc, Ibrahim Kulac, Javier A Baena-Del Valle, Tracy Jones, Jessica L Hicks, Stephanie Glavaris, Gunes Guner, Igor D Vidal, Bruce J Trock, Uttara Joshi, Chaith Kondragunta, Saikiran Bonthu, Corinne Joshu, Nitin Singhal, Angelo M De Marzo, Tamara L Lotan","doi":"10.1016/j.euo.2024.08.004","DOIUrl":null,"url":null,"abstract":"<p><p>Gleason grade group (GG) is the most powerful prognostic variable in localized prostate cancer; however, interobserver variability remains a challenge. Artificial intelligence algorithms applied to histopathologic images standardize grading, but most have been tested only for agreement with pathologist GG, without assessment of performance with respect to oncologic outcomes. We compared deep learning-based and pathologist-based GGs for an association with metastatic outcome in three surgical cohorts comprising 777 unique patients. A digitized whole slide image of the representative hematoxylin and eosin-stained slide of the dominant tumor nodule was assigned a GG by an artificial intelligence-based grading algorithm and was compared with the GG assigned by a contemporary pathologist or the original pathologist-assigned GG for the entire prostatectomy. Harrell's C-indices based on Cox models for time to metastasis were compared. In a combined analysis of all cohorts, the C-index for the artificial intelligence-assigned GG was 0.77 (95% confidence interval [CI]: 0.73-0.81), compared with 0.77 (95% CI: 0.73-0.81) for the pathologist-assigned GG. By comparison, the original pathologist-assigned GG for the entire case had a C-index of 0.78 (95% CI: 0.73-0.82). PATIENT SUMMARY: Artificial intelligence-enabled prostate cancer grading on a single slide was comparable with pathologist grading for predicting metastatic outcome in men treated by radical prostatectomy, enabling equal access to expert grading in lower resource settings.</p>","PeriodicalId":12256,"journal":{"name":"European urology oncology","volume":" ","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European urology oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.euo.2024.08.004","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Gleason grade group (GG) is the most powerful prognostic variable in localized prostate cancer; however, interobserver variability remains a challenge. Artificial intelligence algorithms applied to histopathologic images standardize grading, but most have been tested only for agreement with pathologist GG, without assessment of performance with respect to oncologic outcomes. We compared deep learning-based and pathologist-based GGs for an association with metastatic outcome in three surgical cohorts comprising 777 unique patients. A digitized whole slide image of the representative hematoxylin and eosin-stained slide of the dominant tumor nodule was assigned a GG by an artificial intelligence-based grading algorithm and was compared with the GG assigned by a contemporary pathologist or the original pathologist-assigned GG for the entire prostatectomy. Harrell's C-indices based on Cox models for time to metastasis were compared. In a combined analysis of all cohorts, the C-index for the artificial intelligence-assigned GG was 0.77 (95% confidence interval [CI]: 0.73-0.81), compared with 0.77 (95% CI: 0.73-0.81) for the pathologist-assigned GG. By comparison, the original pathologist-assigned GG for the entire case had a C-index of 0.78 (95% CI: 0.73-0.82). PATIENT SUMMARY: Artificial intelligence-enabled prostate cancer grading on a single slide was comparable with pathologist grading for predicting metastatic outcome in men treated by radical prostatectomy, enabling equal access to expert grading in lower resource settings.
期刊介绍:
Journal Name: European Urology Oncology
Affiliation: Official Journal of the European Association of Urology
Focus:
First official publication of the EAU fully devoted to the study of genitourinary malignancies
Aims to deliver high-quality research
Content:
Includes original articles, opinion piece editorials, and invited reviews
Covers clinical, basic, and translational research
Publication Frequency: Six times a year in electronic format