Nathan Aymerich, Luca J. Schlotheuber, Olivia T. M. Bucheli, Kevin Portmann, Jean Baudry, Klaus Eyer
{"title":"Antibody density on bacteria regulates C1q recruitment by monoclonal IgG but not IgM","authors":"Nathan Aymerich, Luca J. Schlotheuber, Olivia T. M. Bucheli, Kevin Portmann, Jean Baudry, Klaus Eyer","doi":"10.1002/eji.202451228","DOIUrl":null,"url":null,"abstract":"<p>Antibodies that trigger the complement system play a pivotal role in the immune defense against pathogenic bacteria and offer potential therapeutic avenues for combating antibiotic-resistant bacterial infections, a rising global concern. To gain a deeper understanding of the key parameters regulating complement activation by monoclonal antibodies, we developed a novel bioassay for quantifying classical complement activation at the monoclonal antibody level, and employed this assay to characterize rare complement-activating antibacterial antibodies on the single-antibody level in postimmunization murine antibody repertoires. We characterized monoclonal antibodies from various antibody isotypes against specific pathogenic bacteria (<i>Bordetella pertussis</i> and <i>Neisseria meningitidis</i>) to broaden the scope of our findings. We demonstrated activation of the classical pathway by individual IgM- and IgG-secreting cells, that is, monoclonal IgM and IgG2a/2b/3 subclasses. Additionally, we could observe different epitope density requirements for efficient C1q binding depending on antibody isotype, which is in agreement with previously proposed molecular mechanisms. In short, we found that antibody density most crucially regulated C1q recruitment by monoclonal IgG isotypes, but not IgM isotypes. This study provides additional insights into important parameters for classical complement initiation by monoclonal antibodies, a knowledge that might inform antibody screening and vaccination efforts.</p>","PeriodicalId":165,"journal":{"name":"European Journal of Immunology","volume":"54 11","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eji.202451228","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Immunology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eji.202451228","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Antibodies that trigger the complement system play a pivotal role in the immune defense against pathogenic bacteria and offer potential therapeutic avenues for combating antibiotic-resistant bacterial infections, a rising global concern. To gain a deeper understanding of the key parameters regulating complement activation by monoclonal antibodies, we developed a novel bioassay for quantifying classical complement activation at the monoclonal antibody level, and employed this assay to characterize rare complement-activating antibacterial antibodies on the single-antibody level in postimmunization murine antibody repertoires. We characterized monoclonal antibodies from various antibody isotypes against specific pathogenic bacteria (Bordetella pertussis and Neisseria meningitidis) to broaden the scope of our findings. We demonstrated activation of the classical pathway by individual IgM- and IgG-secreting cells, that is, monoclonal IgM and IgG2a/2b/3 subclasses. Additionally, we could observe different epitope density requirements for efficient C1q binding depending on antibody isotype, which is in agreement with previously proposed molecular mechanisms. In short, we found that antibody density most crucially regulated C1q recruitment by monoclonal IgG isotypes, but not IgM isotypes. This study provides additional insights into important parameters for classical complement initiation by monoclonal antibodies, a knowledge that might inform antibody screening and vaccination efforts.
期刊介绍:
The European Journal of Immunology (EJI) is an official journal of EFIS. Established in 1971, EJI continues to serve the needs of the global immunology community covering basic, translational and clinical research, ranging from adaptive and innate immunity through to vaccines and immunotherapy, cancer, autoimmunity, allergy and more. Mechanistic insights and thought-provoking immunological findings are of interest, as are studies using the latest omics technologies. We offer fast track review for competitive situations, including recently scooped papers, format free submission, transparent and fair peer review and more as detailed in our policies.