Low Regularity Full Error Estimates for the Cubic Nonlinear Schrödinger Equation

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Lun Ji, Alexander Ostermann, Frédéric Rousset, Katharina Schratz
{"title":"Low Regularity Full Error Estimates for the Cubic Nonlinear Schrödinger Equation","authors":"Lun Ji, Alexander Ostermann, Frédéric Rousset, Katharina Schratz","doi":"10.1137/23m1619617","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 5, Page 2071-2086, October 2024. <br/> Abstract. For the numerical solution of the cubic nonlinear Schrödinger equation with periodic boundary conditions, a pseudospectral method in space combined with a filtered Lie splitting scheme in time is considered. This scheme is shown to converge even for initial data with very low regularity. In particular, for data in [math], where [math], convergence of order [math] is proved in [math]. Here [math] denotes the time step size and [math] the number of Fourier modes considered. The proof of this result is carried out in an abstract framework of discrete Bourgain spaces; the final convergence result, however, is given in [math]. The stated convergence behavior is illustrated by several numerical examples.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"14 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1619617","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Numerical Analysis, Volume 62, Issue 5, Page 2071-2086, October 2024.
Abstract. For the numerical solution of the cubic nonlinear Schrödinger equation with periodic boundary conditions, a pseudospectral method in space combined with a filtered Lie splitting scheme in time is considered. This scheme is shown to converge even for initial data with very low regularity. In particular, for data in [math], where [math], convergence of order [math] is proved in [math]. Here [math] denotes the time step size and [math] the number of Fourier modes considered. The proof of this result is carried out in an abstract framework of discrete Bourgain spaces; the final convergence result, however, is given in [math]. The stated convergence behavior is illustrated by several numerical examples.
立方非线性薛定谔方程的低正则全误差估计
SIAM 数值分析期刊》,第 62 卷,第 5 期,第 2071-2086 页,2024 年 10 月。 摘要。对于具有周期性边界条件的立方非线性薛定谔方程的数值求解,考虑了空间伪谱法与时间滤波列分裂方案相结合的方法。结果表明,即使初始数据的规律性很低,该方案也能收敛。特别是,对于[math]中的数据,其中[math],[math]中证明了阶[math]的收敛性。这里 [math] 表示时间步长,[math] 表示考虑的傅立叶模式数。这一结果的证明是在离散布尔干空间的抽象框架中进行的;而最终的收敛结果则在 [math] 中给出。所述收敛行为通过几个数值示例加以说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信