Tamara Kucherenko , Martin Schmoll , Christian Wolf
{"title":"Ergodic theory on coded shift spaces","authors":"Tamara Kucherenko , Martin Schmoll , Christian Wolf","doi":"10.1016/j.aim.2024.109913","DOIUrl":null,"url":null,"abstract":"<div><p>We study ergodic-theoretic properties of coded shift spaces. A coded shift space is defined as a closure of all bi-infinite concatenations of words from a fixed countable generating set. We derive sufficient conditions for the uniqueness of measures of maximal entropy and equilibrium states of Hölder continuous potentials based on the partition of the coded shift into its concatenation set (sequences that are concatenations of generating words) and its residual set (sequences added under the closure). In this case we provide a simple explicit description of the measure of maximal entropy. We also obtain flexibility results for the entropy on the concatenation and residual sets. Finally, we prove a local structure theorem for intrinsically ergodic coded shift spaces which shows that our results apply to a larger class of coded shift spaces compared to previous works by Climenhaga <span><span>[9]</span></span>, Climenhaga and Thompson <span><span>[10]</span></span>, <span><span>[11]</span></span>, and Pavlov <span><span>[25]</span></span>.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004286","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We study ergodic-theoretic properties of coded shift spaces. A coded shift space is defined as a closure of all bi-infinite concatenations of words from a fixed countable generating set. We derive sufficient conditions for the uniqueness of measures of maximal entropy and equilibrium states of Hölder continuous potentials based on the partition of the coded shift into its concatenation set (sequences that are concatenations of generating words) and its residual set (sequences added under the closure). In this case we provide a simple explicit description of the measure of maximal entropy. We also obtain flexibility results for the entropy on the concatenation and residual sets. Finally, we prove a local structure theorem for intrinsically ergodic coded shift spaces which shows that our results apply to a larger class of coded shift spaces compared to previous works by Climenhaga [9], Climenhaga and Thompson [10], [11], and Pavlov [25].
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.