Explainable artificial intelligence for investigating the effect of lifestyle factors on obesity

Tarek Khater , Hissam Tawfik , Balbir Singh
{"title":"Explainable artificial intelligence for investigating the effect of lifestyle factors on obesity","authors":"Tarek Khater ,&nbsp;Hissam Tawfik ,&nbsp;Balbir Singh","doi":"10.1016/j.iswa.2024.200427","DOIUrl":null,"url":null,"abstract":"<div><p>Obesity is a critical health issue associated with severe medical conditions. To enhance public health and well-being, early prediction of obesity risk is crucial. This study introduces an innovative approach to predicting obesity levels using explainable artificial intelligence, focusing on lifestyle factors rather than traditional BMI measures. Our best-performing machine learning model, free from BMI parameters, achieved 86.5% accuracy using the Random Forest algorithm. Explainability techniques, including SHAP, PDP and feature importance are employed to gain insights into lifestyle factors’ impact on obesity. Key findings indicate the importance of meal frequency and technology usage. This work demonstrates the significance of lifestyle factors in obesity risk and the power of model-agnostic methods to uncover these relationships.</p></div>","PeriodicalId":100684,"journal":{"name":"Intelligent Systems with Applications","volume":"23 ","pages":"Article 200427"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667305324001017/pdfft?md5=407ce92f9dd36e0c9ad869d60f0b52a5&pid=1-s2.0-S2667305324001017-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667305324001017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Obesity is a critical health issue associated with severe medical conditions. To enhance public health and well-being, early prediction of obesity risk is crucial. This study introduces an innovative approach to predicting obesity levels using explainable artificial intelligence, focusing on lifestyle factors rather than traditional BMI measures. Our best-performing machine learning model, free from BMI parameters, achieved 86.5% accuracy using the Random Forest algorithm. Explainability techniques, including SHAP, PDP and feature importance are employed to gain insights into lifestyle factors’ impact on obesity. Key findings indicate the importance of meal frequency and technology usage. This work demonstrates the significance of lifestyle factors in obesity risk and the power of model-agnostic methods to uncover these relationships.

用于研究生活方式因素对肥胖症影响的可解释人工智能
肥胖是一个严重的健康问题,与严重的医疗状况有关。为了增进公众健康和福祉,及早预测肥胖风险至关重要。本研究介绍了一种利用可解释人工智能预测肥胖程度的创新方法,重点关注生活方式因素而非传统的体重指数衡量标准。我们使用随机森林算法建立了不含 BMI 参数的最佳机器学习模型,准确率达到 86.5%。我们采用了可解释性技术,包括SHAP、PDP和特征重要性,以深入了解生活方式因素对肥胖的影响。主要研究结果表明了进餐频率和技术使用的重要性。这项工作证明了生活方式因素在肥胖风险中的重要性,以及模型识别方法揭示这些关系的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信