Haiming Yao , Wei Luo , Weihang Zhang , Xiaotian Zhang , Zhenfeng Qiang , Donghao Luo
{"title":"Local–global normality learning and discrepancy normalizing flow for unsupervised image anomaly detection","authors":"Haiming Yao , Wei Luo , Weihang Zhang , Xiaotian Zhang , Zhenfeng Qiang , Donghao Luo","doi":"10.1016/j.engappai.2024.109235","DOIUrl":null,"url":null,"abstract":"<div><p>The unsupervised detection and localization of image anomalies hold significant importance across various domains, particularly in industrial quality inspection. Despite its widespread utilization, this task remains inherently challenging due to its reliance solely on defect-free normal knowledge. This paper presents the local–global normality learning and discrepancy normalizing flow, a new state-of-the-art model for unsupervised image anomaly detection and localization. In contrast to existing methods, It adopts a two-stream approach that considers both local and global semantics, ensuring stable detection of abnormalities. The framework comprises two key components: the dual-branch Transformer and the discrepancy normalizing flow, facilitating reconstruction and discrimination. The proposed framework leverages pre-trained convolutional neural networks to extract multi-scale feature embeddings, followed by a novel dual-branch transformer that achieves feature reconstruction from local and global perspectives. The local reconstruction employs self-attention, while the global reconstruction incorporates global prototype tokens and semantic query tokens by the aggregation-cross attention mechanism. Moreover, discrepancy normalizing flow is developed to estimate the likelihood of anomalies based on the discrepancy between pre-trained features and local/global reconstruction results. Extensive validation on established public benchmarks confirms that our method achieves state-of-the-art performance with the proposed local–global reconstruction and discrimination dual-stream framework.</p></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624013939","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The unsupervised detection and localization of image anomalies hold significant importance across various domains, particularly in industrial quality inspection. Despite its widespread utilization, this task remains inherently challenging due to its reliance solely on defect-free normal knowledge. This paper presents the local–global normality learning and discrepancy normalizing flow, a new state-of-the-art model for unsupervised image anomaly detection and localization. In contrast to existing methods, It adopts a two-stream approach that considers both local and global semantics, ensuring stable detection of abnormalities. The framework comprises two key components: the dual-branch Transformer and the discrepancy normalizing flow, facilitating reconstruction and discrimination. The proposed framework leverages pre-trained convolutional neural networks to extract multi-scale feature embeddings, followed by a novel dual-branch transformer that achieves feature reconstruction from local and global perspectives. The local reconstruction employs self-attention, while the global reconstruction incorporates global prototype tokens and semantic query tokens by the aggregation-cross attention mechanism. Moreover, discrepancy normalizing flow is developed to estimate the likelihood of anomalies based on the discrepancy between pre-trained features and local/global reconstruction results. Extensive validation on established public benchmarks confirms that our method achieves state-of-the-art performance with the proposed local–global reconstruction and discrimination dual-stream framework.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.