Unidirectional and hierarchical on-chip interconnected architecture for large-scale hardware spiking neural networks

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
{"title":"Unidirectional and hierarchical on-chip interconnected architecture for large-scale hardware spiking neural networks","authors":"","doi":"10.1016/j.neucom.2024.128480","DOIUrl":null,"url":null,"abstract":"<div><p>Spiking Neural Networks (SNNs) exhibit the strong capability to address spatiotemporal dynamic problems. Recent research has explored the hardware SNN systems to solve the spatiotemporal problems in real-time. The Network-on-Chip (NoC) is an effective scheme for building large-scale hardware SNNs. However, for the existing NoC-based hardware SNNs, large area overhead and hardware power are consumed by their interconnections, because of complex topologies and router structures. Therefore, in this work a novel Unidirectional and Hierarchical on-Chip Interconnected Architecture (UHCIA) is proposed to address this problem. The proposed UHCIA mainly combines the novel hybrid topology of unidirectional multiple loops and rings, and uses a deflection router technique. Experimental results show that compared to other works, the UHCIA achieves <span><math><mo>∼</mo></math></span>23.6X of area reduction and <span><math><mo>∼</mo></math></span>6.4X of power reduction, with high system throughput and biological real-time computations.</p></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224012517","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Spiking Neural Networks (SNNs) exhibit the strong capability to address spatiotemporal dynamic problems. Recent research has explored the hardware SNN systems to solve the spatiotemporal problems in real-time. The Network-on-Chip (NoC) is an effective scheme for building large-scale hardware SNNs. However, for the existing NoC-based hardware SNNs, large area overhead and hardware power are consumed by their interconnections, because of complex topologies and router structures. Therefore, in this work a novel Unidirectional and Hierarchical on-Chip Interconnected Architecture (UHCIA) is proposed to address this problem. The proposed UHCIA mainly combines the novel hybrid topology of unidirectional multiple loops and rings, and uses a deflection router technique. Experimental results show that compared to other works, the UHCIA achieves 23.6X of area reduction and 6.4X of power reduction, with high system throughput and biological real-time computations.

用于大规模硬件尖峰神经网络的单向和分层片上互连架构
尖峰神经网络(SNN)具有解决时空动态问题的强大能力。最近的研究探索了实时解决时空问题的硬件 SNN 系统。片上网络(NoC)是构建大规模硬件 SNN 的有效方案。然而,对于现有的基于 NoC 的硬件 SNN,由于复杂的拓扑结构和路由器结构,其互连会消耗大量的面积开销和硬件功耗。因此,本研究提出了一种新型单向分层片上互连架构(UHCIA)来解决这一问题。所提出的 UHCIA 主要结合了单向多环路和环路的新型混合拓扑结构,并使用了偏转路由器技术。实验结果表明,与其他研究相比,UHCIA 的面积缩小了 23.6 倍,功耗降低了 6.4 倍,系统吞吐量和生物实时计算能力都很高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信