Purifying selection drives distinctive arsenic metabolism pathways in prokaryotic and eukaryotic microbes.

IF 5.1 Q1 ECOLOGY
ISME communications Pub Date : 2024-08-20 eCollection Date: 2024-01-01 DOI:10.1093/ismeco/ycae106
Lijuan Li, Songcan Chen, Ximei Xue, Jieyin Chen, Jian Tian, Lijuan Huo, Tuo Zhang, Xibai Zeng, Shiming Su
{"title":"Purifying selection drives distinctive arsenic metabolism pathways in prokaryotic and eukaryotic microbes.","authors":"Lijuan Li, Songcan Chen, Ximei Xue, Jieyin Chen, Jian Tian, Lijuan Huo, Tuo Zhang, Xibai Zeng, Shiming Su","doi":"10.1093/ismeco/ycae106","DOIUrl":null,"url":null,"abstract":"<p><p>Microbes play a crucial role in the arsenic biogeochemical cycle through specific metabolic pathways to adapt to arsenic toxicity. However, the different arsenic-detoxification strategies between prokaryotic and eukaryotic microbes are poorly understood. This hampers our comprehension of how microbe-arsenic interactions drive the arsenic cycle and the development of microbial methods for remediation. In this study, we utilized conserved protein domains from 16 arsenic biotransformation genes (ABGs) to search for homologous proteins in 670 microbial genomes. Prokaryotes exhibited a wider species distribution of arsenic reduction- and arsenic efflux-related genes than fungi, whereas arsenic oxidation-related genes were more prevalent in fungi than in prokaryotes. This was supported by significantly higher <i>acr3</i> (arsenite efflux permease) expression in bacteria (upregulated 3.72-fold) than in fungi (upregulated 1.54-fold) and higher <i>aoxA</i> (arsenite oxidase) expression in fungi (upregulated 5.11-fold) than in bacteria (upregulated 2.05-fold) under arsenite stress. The average values of nonsynonymous substitutions per nonsynonymous site to synonymous substitutions per synonymous site (dN/dS) of homologous ABGs were higher in archaea (0.098) and bacteria (0.124) than in fungi (0.051). Significant negative correlations between the dN/dS of ABGs and species distribution breadth and gene expression levels in archaea, bacteria, and fungi indicated that microbes establish the distinct strength of purifying selection for homologous ABGs. These differences contribute to the distinct arsenic metabolism pathways in prokaryotic and eukaryotic microbes. These observations facilitate a significant shift from studying individual or several ABGs to characterizing the comprehensive microbial strategies of arsenic detoxification.</p>","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370035/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismeco/ycae106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Microbes play a crucial role in the arsenic biogeochemical cycle through specific metabolic pathways to adapt to arsenic toxicity. However, the different arsenic-detoxification strategies between prokaryotic and eukaryotic microbes are poorly understood. This hampers our comprehension of how microbe-arsenic interactions drive the arsenic cycle and the development of microbial methods for remediation. In this study, we utilized conserved protein domains from 16 arsenic biotransformation genes (ABGs) to search for homologous proteins in 670 microbial genomes. Prokaryotes exhibited a wider species distribution of arsenic reduction- and arsenic efflux-related genes than fungi, whereas arsenic oxidation-related genes were more prevalent in fungi than in prokaryotes. This was supported by significantly higher acr3 (arsenite efflux permease) expression in bacteria (upregulated 3.72-fold) than in fungi (upregulated 1.54-fold) and higher aoxA (arsenite oxidase) expression in fungi (upregulated 5.11-fold) than in bacteria (upregulated 2.05-fold) under arsenite stress. The average values of nonsynonymous substitutions per nonsynonymous site to synonymous substitutions per synonymous site (dN/dS) of homologous ABGs were higher in archaea (0.098) and bacteria (0.124) than in fungi (0.051). Significant negative correlations between the dN/dS of ABGs and species distribution breadth and gene expression levels in archaea, bacteria, and fungi indicated that microbes establish the distinct strength of purifying selection for homologous ABGs. These differences contribute to the distinct arsenic metabolism pathways in prokaryotic and eukaryotic microbes. These observations facilitate a significant shift from studying individual or several ABGs to characterizing the comprehensive microbial strategies of arsenic detoxification.

纯化选择驱动原核和真核微生物中独特的砷代谢途径。
微生物通过特定的代谢途径适应砷的毒性,在砷的生物地球化学循环中发挥着至关重要的作用。然而,人们对原核微生物和真核微生物之间不同的砷解毒策略知之甚少。这阻碍了我们对微生物与砷之间的相互作用如何推动砷循环以及开发微生物修复方法的理解。在这项研究中,我们利用 16 个砷生物转化基因(ABGs)的保守蛋白结构域,在 670 个微生物基因组中寻找同源蛋白。与真菌相比,原核生物中砷还原和砷外流相关基因的物种分布更广,而与砷氧化相关的基因在真菌中比在原核生物中更为普遍。在亚砷酸盐胁迫下,细菌中 acr3(亚砷酸盐外排渗透酶)的表达量(上调 3.72 倍)明显高于真菌(上调 1.54 倍),真菌中 aoxA(亚砷酸盐氧化酶)的表达量(上调 5.11 倍)也高于细菌(上调 2.05 倍),这些都证明了这一点。同源 ABGs 的每个非同义位点的非同义替换与每个同义位点的同义替换的平均值(dN/dS)在古菌(0.098)和细菌(0.124)中高于真菌(0.051)。同源 ABGs 的 dN/dS 与古细菌、细菌和真菌的物种分布广度和基因表达水平呈显著负相关,这表明微生物对同源 ABGs 的纯化选择具有不同的强度。这些差异促成了原核微生物和真核微生物不同的砷代谢途径。这些观察结果促进了从研究单个或多个 ABGs 到描述微生物砷解毒综合策略的重大转变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信