{"title":"Baseline <sup>18</sup>F-FDG PET Radiomics Predicting Therapeutic Efficacy of Diffuse Large B-Cell Lymphoma after R-CHOP (-Like) Therapy.","authors":"Fenglian Jing, Xinchao Zhang, Yunuan Liu, Xiaolin Chen, Xinming Zhao, Xiaoshan Chen, Huiqing Yuan, Meng Dai, Na Wang, Jingya Han, Jingmian Zhang","doi":"10.1089/cbr.2024.0115","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Objective:</i></b> This study aimed to predict therapeutic efficacy among diffuse large B-cell lymphoma (DLBCL) after R-CHOP (-like) therapy using baseline <sup>18</sup>F-fluorodeoxyglucose positron emission tomography (<sup>18</sup>F-FDG PET) radiomics. <b><i>Methods:</i></b> A total of 239 patients with DLBCL were enrolled in this study, with 82 patients having refractory/relapsed disease. The radiomics signatures were developed using a stacking ensemble approach. The efficacy of the radiomics signatures, the National Comprehensive Cancer Network-International Prognostic Index (NCCN-IPI), conventional PET parameters model, and their combinations in assessing refractory/relapse risk were evaluated using receiver operating characteristic (ROC) curves, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), accuracy and decision curve analysis. <b><i>Results:</i></b> The stacking model, along with the integrated model that combines stacking with the NCCN-IPI and SDmax (the distance between the two lesions farthest apart, normalized to the patient's body surface area), showed remarkable predictive capabilities with a high area under the curve (AUC), sensitivity, specificity, PPV, NPV, accuracy, and significant net benefit of the AUC (NB-AUC). Although no significant differences were observed between the combined and stacking models in terms of the AUC in either the training cohort (AUC: 0.992 vs. 0.985, <i>p</i> = 0.139) or the testing cohort (AUC: 0.768 vs. 0.781, <i>p</i> = 0.668), the integrated model exhibited higher values for sensitivity, PPV, NPV, accuracy, and NB-AUC than the stacking model. <b><i>Conclusion:</i></b> Baseline PET radiomics could predict therapeutic efficacy in DLBCL after R-CHOP (-like) therapy, with improved predictive performance when incorporating clinical features and SDmax.</p>","PeriodicalId":55277,"journal":{"name":"Cancer Biotherapy and Radiopharmaceuticals","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biotherapy and Radiopharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/cbr.2024.0115","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: This study aimed to predict therapeutic efficacy among diffuse large B-cell lymphoma (DLBCL) after R-CHOP (-like) therapy using baseline 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) radiomics. Methods: A total of 239 patients with DLBCL were enrolled in this study, with 82 patients having refractory/relapsed disease. The radiomics signatures were developed using a stacking ensemble approach. The efficacy of the radiomics signatures, the National Comprehensive Cancer Network-International Prognostic Index (NCCN-IPI), conventional PET parameters model, and their combinations in assessing refractory/relapse risk were evaluated using receiver operating characteristic (ROC) curves, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), accuracy and decision curve analysis. Results: The stacking model, along with the integrated model that combines stacking with the NCCN-IPI and SDmax (the distance between the two lesions farthest apart, normalized to the patient's body surface area), showed remarkable predictive capabilities with a high area under the curve (AUC), sensitivity, specificity, PPV, NPV, accuracy, and significant net benefit of the AUC (NB-AUC). Although no significant differences were observed between the combined and stacking models in terms of the AUC in either the training cohort (AUC: 0.992 vs. 0.985, p = 0.139) or the testing cohort (AUC: 0.768 vs. 0.781, p = 0.668), the integrated model exhibited higher values for sensitivity, PPV, NPV, accuracy, and NB-AUC than the stacking model. Conclusion: Baseline PET radiomics could predict therapeutic efficacy in DLBCL after R-CHOP (-like) therapy, with improved predictive performance when incorporating clinical features and SDmax.
期刊介绍:
Cancer Biotherapy and Radiopharmaceuticals is the established peer-reviewed journal, with over 25 years of cutting-edge content on innovative therapeutic investigations to ultimately improve cancer management. It is the only journal with the specific focus of cancer biotherapy and is inclusive of monoclonal antibodies, cytokine therapy, cancer gene therapy, cell-based therapies, and other forms of immunotherapies.
The Journal includes extensive reporting on advancements in radioimmunotherapy, and the use of radiopharmaceuticals and radiolabeled peptides for the development of new cancer treatments.