Baseline 18F-FDG PET Radiomics Predicting Therapeutic Efficacy of Diffuse Large B-Cell Lymphoma after R-CHOP (-Like) Therapy.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Fenglian Jing, Xinchao Zhang, Yunuan Liu, Xiaolin Chen, Xinming Zhao, Xiaoshan Chen, Huiqing Yuan, Meng Dai, Na Wang, Jingya Han, Jingmian Zhang
{"title":"Baseline <sup>18</sup>F-FDG PET Radiomics Predicting Therapeutic Efficacy of Diffuse Large B-Cell Lymphoma after R-CHOP (-Like) Therapy.","authors":"Fenglian Jing, Xinchao Zhang, Yunuan Liu, Xiaolin Chen, Xinming Zhao, Xiaoshan Chen, Huiqing Yuan, Meng Dai, Na Wang, Jingya Han, Jingmian Zhang","doi":"10.1089/cbr.2024.0115","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Objective:</i></b> This study aimed to predict therapeutic efficacy among diffuse large B-cell lymphoma (DLBCL) after R-CHOP (-like) therapy using baseline <sup>18</sup>F-fluorodeoxyglucose positron emission tomography (<sup>18</sup>F-FDG PET) radiomics. <b><i>Methods:</i></b> A total of 239 patients with DLBCL were enrolled in this study, with 82 patients having refractory/relapsed disease. The radiomics signatures were developed using a stacking ensemble approach. The efficacy of the radiomics signatures, the National Comprehensive Cancer Network-International Prognostic Index (NCCN-IPI), conventional PET parameters model, and their combinations in assessing refractory/relapse risk were evaluated using receiver operating characteristic (ROC) curves, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), accuracy and decision curve analysis. <b><i>Results:</i></b> The stacking model, along with the integrated model that combines stacking with the NCCN-IPI and SDmax (the distance between the two lesions farthest apart, normalized to the patient's body surface area), showed remarkable predictive capabilities with a high area under the curve (AUC), sensitivity, specificity, PPV, NPV, accuracy, and significant net benefit of the AUC (NB-AUC). Although no significant differences were observed between the combined and stacking models in terms of the AUC in either the training cohort (AUC: 0.992 vs. 0.985, <i>p</i> = 0.139) or the testing cohort (AUC: 0.768 vs. 0.781, <i>p</i> = 0.668), the integrated model exhibited higher values for sensitivity, PPV, NPV, accuracy, and NB-AUC than the stacking model. <b><i>Conclusion:</i></b> Baseline PET radiomics could predict therapeutic efficacy in DLBCL after R-CHOP (-like) therapy, with improved predictive performance when incorporating clinical features and SDmax.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/cbr.2024.0115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: This study aimed to predict therapeutic efficacy among diffuse large B-cell lymphoma (DLBCL) after R-CHOP (-like) therapy using baseline 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) radiomics. Methods: A total of 239 patients with DLBCL were enrolled in this study, with 82 patients having refractory/relapsed disease. The radiomics signatures were developed using a stacking ensemble approach. The efficacy of the radiomics signatures, the National Comprehensive Cancer Network-International Prognostic Index (NCCN-IPI), conventional PET parameters model, and their combinations in assessing refractory/relapse risk were evaluated using receiver operating characteristic (ROC) curves, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), accuracy and decision curve analysis. Results: The stacking model, along with the integrated model that combines stacking with the NCCN-IPI and SDmax (the distance between the two lesions farthest apart, normalized to the patient's body surface area), showed remarkable predictive capabilities with a high area under the curve (AUC), sensitivity, specificity, PPV, NPV, accuracy, and significant net benefit of the AUC (NB-AUC). Although no significant differences were observed between the combined and stacking models in terms of the AUC in either the training cohort (AUC: 0.992 vs. 0.985, p = 0.139) or the testing cohort (AUC: 0.768 vs. 0.781, p = 0.668), the integrated model exhibited higher values for sensitivity, PPV, NPV, accuracy, and NB-AUC than the stacking model. Conclusion: Baseline PET radiomics could predict therapeutic efficacy in DLBCL after R-CHOP (-like) therapy, with improved predictive performance when incorporating clinical features and SDmax.

预测弥漫大 B 细胞淋巴瘤接受 R-CHOP (-Like) 治疗后疗效的基线 18F-FDG PET 放射组学。
研究目的本研究旨在利用基线18F-氟脱氧葡萄糖正电子发射断层扫描(18F-FDG PET)放射组学预测弥漫大B细胞淋巴瘤(DLBCL)接受R-CHOP(类)治疗后的疗效。研究方法本研究共招募了239名DLBCL患者,其中82名患者患有难治性/复发性疾病。放射组学特征是采用堆叠集合方法开发的。使用接收器操作特征曲线(ROC)、灵敏度、特异性、阳性预测值(PPV)、阴性预测值(NPV)、准确性和决策曲线分析评估了放射组学特征、美国国家综合癌症网络-国际预后指数(NCCN-IPI)、传统 PET 参数模型及其组合在评估难治/复发风险方面的功效。结果:堆叠模型以及将堆叠与 NCCN-IPI 和 SDmax(相距最远的两个病灶之间的距离,以患者的体表面积归一化)结合起来的综合模型显示出卓越的预测能力,具有较高的曲线下面积(AUC)、灵敏度、特异性、PPV、NPV、准确性和显著的 AUC 净效益(NB-AUC)。虽然在训练队列(AUC:0.992 vs. 0.985,p = 0.139)或测试队列(AUC:0.768 vs. 0.781,p = 0.668)中,综合模型和堆叠模型的 AUC 均无明显差异,但综合模型的灵敏度、PPV、NPV、准确度和 NB-AUC 值均高于堆叠模型。结论基线PET放射组学可预测R-CHOP(类)治疗后DLBCL的疗效,在结合临床特征和SDmax后,其预测性能有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信