Development and Assessment of a Predictive Model for Ki-67 Expression Using Ultrasound Indicators and Non-Morphological Magnetic Resonance Imaging Parameters Before Breast Cancer Therapy.

IF 2.5 4区 医学 Q1 ACOUSTICS
Ultrasonic Imaging Pub Date : 2024-11-01 Epub Date: 2024-09-04 DOI:10.1177/01617346241271107
Hong-E Li, Chen Cheng
{"title":"Development and Assessment of a Predictive Model for Ki-67 Expression Using Ultrasound Indicators and Non-Morphological Magnetic Resonance Imaging Parameters Before Breast Cancer Therapy.","authors":"Hong-E Li, Chen Cheng","doi":"10.1177/01617346241271107","DOIUrl":null,"url":null,"abstract":"<p><p>To formulate a predictive model for assessing Ki-67 expression in breast cancer by integrating pre-treatment ultrasound features with non-morphological magnetic resonance imaging (MRI) parameters, encompassing functional and hemodynamic indicators. A retrospective study was conducted on 167 patients. All patients underwent a breast mass biopsy for histopathological and Ki-67 analysis prior to neoadjuvant chemotherapy (NAC) treatment. Additionally, all patients underwent ultrasonography and MRI examinations prior to the biopsy. The recorded variables were Ki-67, apparent diffusion coefficient (ADC) values, Max Slope, time to peak (TTP), signal enhancement ratio (SER), early enhancement rate (EER), time-signal intensity curve (TIC), tumor maximum diameter, tumor margins and boundaries, aspect ratio, microcalcification, color Doppler flow imaging grading, resistance index (RI), and axillary lymph node metastasis. Statistical analysis was performed using the R software package. Normally distributed continuous data are presented as mean ± standard deviation (SD), skewed continuous data as median, and categorical variables as frequency or percentage. The dataset was randomly divided into a modeling group and a validation group following a 7:3 ratio, employing a predetermined random seed. The selection of variables was conducted using the random forest algorithm. Specifically, in the initial analysis, we trained a random forest model using all available variables. By evaluating the Gini importance scores of each variable, we identified those that contributed the most to predicting Ki-67 expression. The predictive model for Ki-67 expression was constructed using selected variables: Maximum Diameter, ADC value, SER value, Max Slope value, TTP value, and EER value. Within the validation group, the evaluation metrics demonstrated an Area under the curve of 0.961 with a 95% confidence interval ranging from 0.865 to 0.995. The model achieved a kappa score of 1.00, precision of 0.949, recall of 1, an F1 score of 0.974, sensitivity of 100%, specificity of 85.71%, a positive predictive value of 94.87%, and a negative predictive value of 100%. The combination of non-morphological MRI parameters and pre-treatment ultrasound features in a breast cancer prediction model powered by RF machine learning demonstrated favorable clinical outcomes and improved diagnostic performance.</p>","PeriodicalId":49401,"journal":{"name":"Ultrasonic Imaging","volume":" ","pages":"332-341"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonic Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/01617346241271107","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

To formulate a predictive model for assessing Ki-67 expression in breast cancer by integrating pre-treatment ultrasound features with non-morphological magnetic resonance imaging (MRI) parameters, encompassing functional and hemodynamic indicators. A retrospective study was conducted on 167 patients. All patients underwent a breast mass biopsy for histopathological and Ki-67 analysis prior to neoadjuvant chemotherapy (NAC) treatment. Additionally, all patients underwent ultrasonography and MRI examinations prior to the biopsy. The recorded variables were Ki-67, apparent diffusion coefficient (ADC) values, Max Slope, time to peak (TTP), signal enhancement ratio (SER), early enhancement rate (EER), time-signal intensity curve (TIC), tumor maximum diameter, tumor margins and boundaries, aspect ratio, microcalcification, color Doppler flow imaging grading, resistance index (RI), and axillary lymph node metastasis. Statistical analysis was performed using the R software package. Normally distributed continuous data are presented as mean ± standard deviation (SD), skewed continuous data as median, and categorical variables as frequency or percentage. The dataset was randomly divided into a modeling group and a validation group following a 7:3 ratio, employing a predetermined random seed. The selection of variables was conducted using the random forest algorithm. Specifically, in the initial analysis, we trained a random forest model using all available variables. By evaluating the Gini importance scores of each variable, we identified those that contributed the most to predicting Ki-67 expression. The predictive model for Ki-67 expression was constructed using selected variables: Maximum Diameter, ADC value, SER value, Max Slope value, TTP value, and EER value. Within the validation group, the evaluation metrics demonstrated an Area under the curve of 0.961 with a 95% confidence interval ranging from 0.865 to 0.995. The model achieved a kappa score of 1.00, precision of 0.949, recall of 1, an F1 score of 0.974, sensitivity of 100%, specificity of 85.71%, a positive predictive value of 94.87%, and a negative predictive value of 100%. The combination of non-morphological MRI parameters and pre-treatment ultrasound features in a breast cancer prediction model powered by RF machine learning demonstrated favorable clinical outcomes and improved diagnostic performance.

利用超声指标和非形态学磁共振成像参数开发和评估乳腺癌治疗前 Ki-67 表达预测模型
通过整合治疗前超声波特征和非形态学磁共振成像(MRI)参数(包括功能和血液动力学指标),建立评估乳腺癌 Ki-67 表达的预测模型。本研究对 167 名患者进行了回顾性研究。所有患者在接受新辅助化疗(NAC)治疗前都进行了乳腺肿块活检,以进行组织病理学和Ki-67分析。此外,所有患者在活检前都接受了超声波和磁共振成像检查。记录的变量包括:Ki-67、表观扩散系数(ADC)值、最大斜率、达峰时间(TTP)、信号增强比(SER)、早期增强率(EER)、时间-信号强度曲线(TIC)、肿瘤最大直径、肿瘤边缘和边界、纵横比、微钙化、彩色多普勒血流成像分级、阻力指数(RI)和腋窝淋巴结转移。统计分析使用 R 软件包进行。正态分布的连续数据以均数±标准差(SD)表示,偏态连续数据以中位数表示,分类变量以频率或百分比表示。数据集按照 7:3 的比例随机分为建模组和验证组,并使用预先确定的随机种子。变量的选择采用随机森林算法。具体来说,在初始分析中,我们使用所有可用变量训练了一个随机森林模型。通过评估每个变量的基尼重要性得分,我们确定了对预测 Ki-67 表达贡献最大的变量。我们利用选定的变量构建了 Ki-67 表达预测模型:最大直径、ADC 值、SER 值、最大斜率值、TTP 值和 EER 值。在验证组中,评估指标显示曲线下面积为 0.961,95% 置信区间为 0.865 至 0.995。该模型的卡帕得分为 1.00,精确度为 0.949,召回率为 1,F1 得分为 0.974,灵敏度为 100%,特异性为 85.71%,阳性预测值为 94.87%,阴性预测值为 100%。在射频机器学习驱动的乳腺癌预测模型中结合非形态学磁共振成像参数和治疗前超声波特征,显示了良好的临床结果和更高的诊断性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ultrasonic Imaging
Ultrasonic Imaging 医学-工程:生物医学
CiteScore
5.10
自引率
8.70%
发文量
15
审稿时长
>12 weeks
期刊介绍: Ultrasonic Imaging provides rapid publication for original and exceptional papers concerned with the development and application of ultrasonic-imaging technology. Ultrasonic Imaging publishes articles in the following areas: theoretical and experimental aspects of advanced methods and instrumentation for imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信