Clinical Translation of a Deep Learning Model of Radiation-Induced Lymphopenia for Esophageal Cancer.

IF 2.1 Q3 ONCOLOGY
International Journal of Particle Therapy Pub Date : 2024-08-05 eCollection Date: 2024-09-01 DOI:10.1016/j.ijpt.2024.100624
Zongsheng Hu, Radhe Mohan, Yan Chu, Xiaochun Wang, Peter S N van Rossum, Yiqing Chen, Madison E Grayson, Angela G Gearhardt, Clemens Grassberger, Degui Zhi, Brian P Hobbs, Steven H Lin, Wenhua Cao
{"title":"Clinical Translation of a Deep Learning Model of Radiation-Induced Lymphopenia for Esophageal Cancer.","authors":"Zongsheng Hu, Radhe Mohan, Yan Chu, Xiaochun Wang, Peter S N van Rossum, Yiqing Chen, Madison E Grayson, Angela G Gearhardt, Clemens Grassberger, Degui Zhi, Brian P Hobbs, Steven H Lin, Wenhua Cao","doi":"10.1016/j.ijpt.2024.100624","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Radiation-induced lymphopenia is a common immune toxicity that adversely impacts treatment outcomes. We report here our approach to translate a deep-learning (DL) model developed to predict severe lymphopenia risk among esophageal cancer into a strategy for incorporating the immune system as an organ-at-risk (iOAR) to mitigate the risk.</p><p><strong>Materials and methods: </strong>We conducted \"virtual clinical trials\" utilizing retrospective data for 10 intensity-modulated radiation therapy (IMRT) and 10 passively-scattered proton therapy (PSPT) esophageal cancer patients. For each patient, additional treatment plans of the modality other than the original were created employing standard-of-care (SOC) dose constraints. Predicted values of absolute lymphocyte count (ALC) nadir for all plans were estimated using a previously-developed DL model. The model also yielded the relative magnitudes of contributions of iOARs dosimetric factors to ALC nadir, which were used to compute iOARs dose-volume constraints, which were incorporated into optimization criteria to produce \"IMRT-enhanced\" and \"intensity-modulated proton therapy (IMPT)-enhanced\" plans.</p><p><strong>Results: </strong>Model-predicted ALC nadir for the original IMRT (IMRT-SOC) and PSPT plans agreed well with actual values. IMPT-SOC showed greater immune sparing vs IMRT and PSPT. The average mean body doses were 13.10 Gy vs 7.62 Gy for IMRT-SOC vs IMPT-SOC for patients treated with IMRT-SOC; and 8.08 Gy vs 6.68 Gy for PSPT vs IMPT-SOC for patients treated with PSPT. For IMRT patients, the average predicted ALC nadir of IMRT-SOC, IMRT-enhanced, IMPT-SOC, and IMPT-enhanced was 281, 327, 351, and 392 cells/µL, respectively. For PSPT patients, the average predicted ALC nadir of PSPT, IMPT-SOC, and IMPT-enhanced was 258, 316, and 350 cells/µL, respectively. Enhanced plans achieved higher predicted ALC nadir, with an average improvement of 40.8 cells/µL (20.6%).</p><p><strong>Conclusion: </strong>The proposed DL model-guided strategy to incorporate the immune system as iOAR in IMRT and IMPT optimization has the potential for radiation-induced lymphopenia mitigation. A prospective clinical trial is planned.</p>","PeriodicalId":36923,"journal":{"name":"International Journal of Particle Therapy","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369390/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Particle Therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.ijpt.2024.100624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Radiation-induced lymphopenia is a common immune toxicity that adversely impacts treatment outcomes. We report here our approach to translate a deep-learning (DL) model developed to predict severe lymphopenia risk among esophageal cancer into a strategy for incorporating the immune system as an organ-at-risk (iOAR) to mitigate the risk.

Materials and methods: We conducted "virtual clinical trials" utilizing retrospective data for 10 intensity-modulated radiation therapy (IMRT) and 10 passively-scattered proton therapy (PSPT) esophageal cancer patients. For each patient, additional treatment plans of the modality other than the original were created employing standard-of-care (SOC) dose constraints. Predicted values of absolute lymphocyte count (ALC) nadir for all plans were estimated using a previously-developed DL model. The model also yielded the relative magnitudes of contributions of iOARs dosimetric factors to ALC nadir, which were used to compute iOARs dose-volume constraints, which were incorporated into optimization criteria to produce "IMRT-enhanced" and "intensity-modulated proton therapy (IMPT)-enhanced" plans.

Results: Model-predicted ALC nadir for the original IMRT (IMRT-SOC) and PSPT plans agreed well with actual values. IMPT-SOC showed greater immune sparing vs IMRT and PSPT. The average mean body doses were 13.10 Gy vs 7.62 Gy for IMRT-SOC vs IMPT-SOC for patients treated with IMRT-SOC; and 8.08 Gy vs 6.68 Gy for PSPT vs IMPT-SOC for patients treated with PSPT. For IMRT patients, the average predicted ALC nadir of IMRT-SOC, IMRT-enhanced, IMPT-SOC, and IMPT-enhanced was 281, 327, 351, and 392 cells/µL, respectively. For PSPT patients, the average predicted ALC nadir of PSPT, IMPT-SOC, and IMPT-enhanced was 258, 316, and 350 cells/µL, respectively. Enhanced plans achieved higher predicted ALC nadir, with an average improvement of 40.8 cells/µL (20.6%).

Conclusion: The proposed DL model-guided strategy to incorporate the immune system as iOAR in IMRT and IMPT optimization has the potential for radiation-induced lymphopenia mitigation. A prospective clinical trial is planned.

食管癌放射诱导淋巴细胞减少症深度学习模型的临床转化。
目的:放射诱导的淋巴细胞减少症是一种常见的免疫毒性,会对治疗效果产生不利影响。我们在此报告了我们将为预测食管癌严重淋巴细胞减少症风险而开发的深度学习(DL)模型转化为将免疫系统作为风险器官(iOAR)以降低风险的策略的方法:我们利用 10 例调强放射治疗(IMRT)和 10 例被动散射质子治疗(PSPT)食管癌患者的回顾性数据进行了 "虚拟临床试验"。根据标准治疗(SOC)剂量限制,为每位患者制定了除原始治疗方案之外的其他治疗方案。所有计划的绝对淋巴细胞计数 (ALC) 最低点预测值都是通过之前开发的 DL 模型估算出来的。该模型还得出了 iOARs 剂量测定因子对 ALC nadir 的相对贡献大小,并将其用于计算 iOARs 剂量-容积约束,将其纳入优化标准,以生成 "IMRT 增强 "和 "强度调制质子疗法 (IMPT) 增强 "计划:原始 IMRT(IMRT-SOC)和 PSPT 方案的模型预测 ALC nadir 与实际值非常吻合。与 IMRT 和 PSPT 相比,IMPT-SOC 显示出更大的免疫疏通作用。对于接受 IMRT-SOC 治疗的患者,IMRT-SOC 与 IMPT-SOC 的平均体内剂量分别为 13.10 Gy 与 7.62 Gy;对于接受 PSPT 治疗的患者,PSPT 与 IMPT-SOC 的平均体内剂量分别为 8.08 Gy 与 6.68 Gy。对于 IMRT 患者,IMRT-SOC、IMRT-增强、IMPT-SOC 和 IMPT-增强的平均预测 ALC nadir 分别为 281、327、351 和 392 cells/µL。对于 PSPT 患者,PSPT、IMPT-SOC 和 IMPT 增强型的平均预测 ALC 最低值分别为 258、316 和 350 cells/µL。增强型计划实现了更高的预测 ALC 最低值,平均提高了 40.8 个细胞/微升(20.6%):结论:将免疫系统作为iOAR纳入IMRT和IMPT优化的DL模型指导策略具有缓解放射诱导的淋巴细胞减少症的潜力。计划进行前瞻性临床试验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Particle Therapy
International Journal of Particle Therapy Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
3.70
自引率
5.90%
发文量
23
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信