Jennifer Li, Andy Yang, Benedito A Carneiro, Ece D Gamsiz Uzun, Lauren Massingham, Alper Uzun
{"title":"Variant graph craft (VGC): a comprehensive tool for analyzing genetic variation and identifying disease-causing variants.","authors":"Jennifer Li, Andy Yang, Benedito A Carneiro, Ece D Gamsiz Uzun, Lauren Massingham, Alper Uzun","doi":"10.1186/s12859-024-05875-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The variant call format (VCF) file is a structured and comprehensive text file crucial for researchers and clinicians in interpreting and understanding genomic variation data. It contains essential information about variant positions in the genome, along with alleles, genotype calls, and quality scores. Analyzing and visualizing these files, however, poses significant challenges due to the need for diverse resources and robust features for in-depth exploration.</p><p><strong>Results: </strong>To address these challenges, we introduce variant graph craft (VGC), a VCF file visualization and analysis tool. VGC offers a wide range of features for exploring genetic variations, including extraction of variant data, intuitive visualization, and graphical representation of samples with genotype information. VGC is designed primarily for the analysis of patient cohorts, but it can also be adapted for use with individual probands or families. It integrates seamlessly with external resources, providing insights into gene function and variant frequencies in sample data. VGC includes gene function and pathway information from Molecular Signatures Database (MSigDB) for GO terms, KEGG, Biocarta, Pathway Interaction Database, and Reactome. Additionally, it dynamically links to gnomAD for variant information and incorporates ClinVar data for pathogenic variant information. VGC supports the Human Genome Assembly Hg37 and Hg38, ensuring compatibility with a wide range of data sets, and accommodates various approaches to exploring genetic variation data. It can be tailored to specific user needs with optional phenotype input data.</p><p><strong>Conclusions: </strong>In summary, VGC provides a comprehensive set of features tailored to researchers working with genomic variation data. Its intuitive interface, rapid filtering capabilities, and the flexibility to perform queries using custom groups make it an effective tool in identifying variants potentially associated with diseases. VGC operates locally, ensuring data security and privacy by eliminating the need for cloud-based VCF uploads, making it a secure and user-friendly tool. It is freely available at https://github.com/alperuzun/VGC .</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370019/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-05875-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The variant call format (VCF) file is a structured and comprehensive text file crucial for researchers and clinicians in interpreting and understanding genomic variation data. It contains essential information about variant positions in the genome, along with alleles, genotype calls, and quality scores. Analyzing and visualizing these files, however, poses significant challenges due to the need for diverse resources and robust features for in-depth exploration.
Results: To address these challenges, we introduce variant graph craft (VGC), a VCF file visualization and analysis tool. VGC offers a wide range of features for exploring genetic variations, including extraction of variant data, intuitive visualization, and graphical representation of samples with genotype information. VGC is designed primarily for the analysis of patient cohorts, but it can also be adapted for use with individual probands or families. It integrates seamlessly with external resources, providing insights into gene function and variant frequencies in sample data. VGC includes gene function and pathway information from Molecular Signatures Database (MSigDB) for GO terms, KEGG, Biocarta, Pathway Interaction Database, and Reactome. Additionally, it dynamically links to gnomAD for variant information and incorporates ClinVar data for pathogenic variant information. VGC supports the Human Genome Assembly Hg37 and Hg38, ensuring compatibility with a wide range of data sets, and accommodates various approaches to exploring genetic variation data. It can be tailored to specific user needs with optional phenotype input data.
Conclusions: In summary, VGC provides a comprehensive set of features tailored to researchers working with genomic variation data. Its intuitive interface, rapid filtering capabilities, and the flexibility to perform queries using custom groups make it an effective tool in identifying variants potentially associated with diseases. VGC operates locally, ensuring data security and privacy by eliminating the need for cloud-based VCF uploads, making it a secure and user-friendly tool. It is freely available at https://github.com/alperuzun/VGC .
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.