Somatostatin peptides prevent increased human colonic epithelial permeability induced by hypoxia.

IF 3.9 3区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY
Ibrahim Rajput, Vazhaikkurichi M Rajendran, Andrew J Nickerson, J Peter A Lodge, Geoffrey I Sandle
{"title":"Somatostatin peptides prevent increased human colonic epithelial permeability induced by hypoxia.","authors":"Ibrahim Rajput, Vazhaikkurichi M Rajendran, Andrew J Nickerson, J Peter A Lodge, Geoffrey I Sandle","doi":"10.1152/ajpgi.00057.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Mesenteric ischemia increases gut permeability and bacterial translocation. In human colon, chemical hypoxia induced by 2,4-dinitrophenol (DNP) activates basolateral intermediate conductance K<sup>+</sup> (IK) channels (designated KCa3.1 or KCNN4) and increases paracellular shunt conductance/permeability (<i>G</i><sub>S</sub>), but whether this leads to increased macromolecule permeability is unclear. Somatostatin (SOM) inhibits IK channels and prevents hypoxia-induced increases in <i>G</i><sub>S</sub>. Thus, we examined whether octreotide (OCT), a synthetic SOM analog, prevents hypoxia-induced increases <i>G</i><sub>S</sub> in human colon and hypoxia-induced increases in total epithelial conductance (<i>G</i><sub>T</sub>) and permeability to FITC-dextran 4000 (FITC) in rat colon. The effects of serosal SOM and OCT on increases in <i>G</i><sub>S</sub> induced by 100 µM DNP were compared in isolated human colon. The effects of OCT on DNP-induced increases in <i>G</i><sub>T</sub> and transepithelial FITC movement were evaluated in isolated rat distal colon. <i>G</i><sub>S</sub> in DNP-treated human colon was 52% greater than in controls (<i>P</i> = 0.003). <i>G</i><sub>S</sub> was similar when 2 µM SOM was added after or before DNP treatment, in both cases being less (<i>P</i> < 0.05) than with DNP alone. OCT (0.2 µM) was equally effective preventing hypoxia-induced increases in <i>G</i><sub>S</sub>, whether added after or before DNP treatment. In rat distal colon, DNP significantly increased <i>G</i><sub>T</sub> by 18% (<i>P</i> = 0.016) and mucosa-to-serosa FITC movement by 43% (<i>P</i> = 0.01), and 0.2 µM OCT pretreatment completely prevented these changes. We conclude that OCT prevents hypoxia-induced increases in paracellular/macromolecule permeability and speculate that it may limit ischemia-induced gut hyperpermeability during abdominal surgery, thereby reducing bacterial/bacterial toxin translocation and sepsis.<b>NEW & NOTEWORTHY</b> Somatostatin (SOM, 2 µM) and octreotide (OCT, 0.2 µM, a long-acting synthetic analog of SOM) were equally effective in preventing chemical hypoxia-induced increases in paracellular shunt permeability/conductance in isolated human colon. In rat distal colon, chemical hypoxia significantly increased total epithelial conductance and transepithelial movement of FITC-dextran 4000, changes completely prevented by 0.2 µM OCT. OCT may prevent or limit gut ischemia during abdominal surgery, thereby decreasing the risk of bacterial/bacterial toxin translocation and sepsis.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Gastrointestinal and liver physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpgi.00057.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mesenteric ischemia increases gut permeability and bacterial translocation. In human colon, chemical hypoxia induced by 2,4-dinitrophenol (DNP) activates basolateral intermediate conductance K+ (IK) channels (designated KCa3.1 or KCNN4) and increases paracellular shunt conductance/permeability (GS), but whether this leads to increased macromolecule permeability is unclear. Somatostatin (SOM) inhibits IK channels and prevents hypoxia-induced increases in GS. Thus, we examined whether octreotide (OCT), a synthetic SOM analog, prevents hypoxia-induced increases GS in human colon and hypoxia-induced increases in total epithelial conductance (GT) and permeability to FITC-dextran 4000 (FITC) in rat colon. The effects of serosal SOM and OCT on increases in GS induced by 100 µM DNP were compared in isolated human colon. The effects of OCT on DNP-induced increases in GT and transepithelial FITC movement were evaluated in isolated rat distal colon. GS in DNP-treated human colon was 52% greater than in controls (P = 0.003). GS was similar when 2 µM SOM was added after or before DNP treatment, in both cases being less (P < 0.05) than with DNP alone. OCT (0.2 µM) was equally effective preventing hypoxia-induced increases in GS, whether added after or before DNP treatment. In rat distal colon, DNP significantly increased GT by 18% (P = 0.016) and mucosa-to-serosa FITC movement by 43% (P = 0.01), and 0.2 µM OCT pretreatment completely prevented these changes. We conclude that OCT prevents hypoxia-induced increases in paracellular/macromolecule permeability and speculate that it may limit ischemia-induced gut hyperpermeability during abdominal surgery, thereby reducing bacterial/bacterial toxin translocation and sepsis.NEW & NOTEWORTHY Somatostatin (SOM, 2 µM) and octreotide (OCT, 0.2 µM, a long-acting synthetic analog of SOM) were equally effective in preventing chemical hypoxia-induced increases in paracellular shunt permeability/conductance in isolated human colon. In rat distal colon, chemical hypoxia significantly increased total epithelial conductance and transepithelial movement of FITC-dextran 4000, changes completely prevented by 0.2 µM OCT. OCT may prevent or limit gut ischemia during abdominal surgery, thereby decreasing the risk of bacterial/bacterial toxin translocation and sepsis.

体生长抑素肽可防止缺氧引起的人类结肠上皮细胞渗透性增加
肠系膜缺血会增加肠道通透性和细菌转运。在人类结肠中,2,4-二硝基苯酚(DNP)诱导的化学性缺氧会激活基底侧中间传导 K+ (IK) 通道(指定为 KCa3.1 或 KCNN4)并增加细胞旁分流传导性/通透性(GS),但这是否会导致大分子通透性增加尚不清楚。体生长抑素(SOM)可抑制 IK 通道并防止缺氧引起的 GS 增加。因此,我们研究了合成的 SOM 类似物奥曲肽 (OCT) 是否能防止缺氧诱导的人结肠 GS 增加,以及缺氧诱导的大鼠结肠上皮总电导 (GT) 和对 FITC-dextran 4000 (FITC) 的通透性增加。在离体人结肠中,比较了血清 SOM 和 OCT 对 100 µM DNP 诱导的 GS 增加的影响。在离体大鼠远端结肠中评估了 OCT 对 DNP 诱导的 GT 增加和 FITC 跨上皮细胞移动的影响。经 DNP 处理的人体结肠的 GS 比对照组高 52%(P = 0.003)。在 DNP 处理之后或之前加入 2 µM SOM 时,GS 相似,无论是在 DNP 处理之后还是之前加入,GS 都较小(P S)。在大鼠远端结肠中,DNP 使 GT 显著增加了 18%(P = 0.016),粘膜到丝网的 FITC 运动增加了 43%(P = 0.01),而 0.2 µM OCT 的预处理完全阻止了这些变化。我们的结论是,OCT 可防止缺氧引起的细胞旁/大分子通透性增加,并推测它可能会限制腹部手术过程中缺血引起的肠道高通透性,从而减少细菌/细菌毒素转运和败血症。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.40
自引率
2.20%
发文量
104
审稿时长
1 months
期刊介绍: The American Journal of Physiology-Gastrointestinal and Liver Physiology publishes original articles pertaining to all aspects of research involving normal or abnormal function of the gastrointestinal tract, hepatobiliary system, and pancreas. Authors are encouraged to submit manuscripts dealing with growth and development, digestion, secretion, absorption, metabolism, and motility relative to these organs, as well as research reports dealing with immune and inflammatory processes and with neural, endocrine, and circulatory control mechanisms that affect these organs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信