GABAergic neuronal lineage development determines clinically actionable targets in diffuse hemispheric glioma, H3G34-mutant

IF 48.8 1区 医学 Q1 CELL BIOLOGY
Ilon Liu, Gustavo Alencastro Veiga Cruzeiro, Lynn Bjerke, Rebecca F. Rogers, Yura Grabovska, Alexander Beck, Alan Mackay, Tara Barron, Olivia A. Hack, Michael A. Quezada, Valeria Molinari, McKenzie L. Shaw, Marta Perez-Somarriba, Sara Temelso, Florence Raynaud, Ruth Ruddle, Eshini Panditharatna, Bernhard Englinger, Hafsa M. Mire, Li Jiang, Mariella G. Filbin
{"title":"GABAergic neuronal lineage development determines clinically actionable targets in diffuse hemispheric glioma, H3G34-mutant","authors":"Ilon Liu, Gustavo Alencastro Veiga Cruzeiro, Lynn Bjerke, Rebecca F. Rogers, Yura Grabovska, Alexander Beck, Alan Mackay, Tara Barron, Olivia A. Hack, Michael A. Quezada, Valeria Molinari, McKenzie L. Shaw, Marta Perez-Somarriba, Sara Temelso, Florence Raynaud, Ruth Ruddle, Eshini Panditharatna, Bernhard Englinger, Hafsa M. Mire, Li Jiang, Mariella G. Filbin","doi":"10.1016/j.ccell.2024.08.006","DOIUrl":null,"url":null,"abstract":"<p>Diffuse hemispheric gliomas, H3G34R/V-mutant (DHG-H3G34), are lethal brain tumors lacking targeted therapies. They originate from interneuronal precursors; however, leveraging this origin for therapeutic insights remains unexplored. Here, we delineate a cellular hierarchy along the interneuron lineage development continuum, revealing that DHG-H3G34 mirror spatial patterns of progenitor streams surrounding interneuron nests, as seen during human brain development. Integrating these findings with genome-wide CRISPR-Cas9 screens identifies genes upregulated in interneuron lineage progenitors as major dependencies. Among these, CDK6 emerges as a targetable vulnerability: DHG-H3G34 tumor cells show enhanced sensitivity to CDK4/6 inhibitors and a CDK6-specific degrader, promoting a shift toward more mature interneuron-like states, reducing tumor growth, and prolonging xenograft survival. Notably, a patient with progressive DHG-H3G34 treated with a CDK4/6 inhibitor achieved 17 months of stable disease. This study underscores interneuronal progenitor-like states, organized in characteristic niches, as a distinct vulnerability in DHG-H3G34, highlighting CDK6 as a promising clinically actionable target.</p>","PeriodicalId":9670,"journal":{"name":"Cancer Cell","volume":"3 1","pages":""},"PeriodicalIF":48.8000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ccell.2024.08.006","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Diffuse hemispheric gliomas, H3G34R/V-mutant (DHG-H3G34), are lethal brain tumors lacking targeted therapies. They originate from interneuronal precursors; however, leveraging this origin for therapeutic insights remains unexplored. Here, we delineate a cellular hierarchy along the interneuron lineage development continuum, revealing that DHG-H3G34 mirror spatial patterns of progenitor streams surrounding interneuron nests, as seen during human brain development. Integrating these findings with genome-wide CRISPR-Cas9 screens identifies genes upregulated in interneuron lineage progenitors as major dependencies. Among these, CDK6 emerges as a targetable vulnerability: DHG-H3G34 tumor cells show enhanced sensitivity to CDK4/6 inhibitors and a CDK6-specific degrader, promoting a shift toward more mature interneuron-like states, reducing tumor growth, and prolonging xenograft survival. Notably, a patient with progressive DHG-H3G34 treated with a CDK4/6 inhibitor achieved 17 months of stable disease. This study underscores interneuronal progenitor-like states, organized in characteristic niches, as a distinct vulnerability in DHG-H3G34, highlighting CDK6 as a promising clinically actionable target.

Abstract Image

GABA能神经元谱系的发展决定了弥漫性半球胶质瘤、H3G34突变体的临床作用靶点
弥漫性半球胶质瘤、H3G34R/V-突变体(DHG-H3G34)是缺乏靶向疗法的致命性脑肿瘤。它们起源于神经元间前体;然而,利用这一起源进行治疗的前景仍有待探索。在这里,我们沿着中间神经元谱系发育连续体划分了一个细胞层次,揭示了 DHG-H3G34 反映了中间神经元巢周围祖细胞流的空间模式,正如在人类大脑发育过程中所看到的那样。将这些发现与全基因组 CRISPR-Cas9 筛选相结合,确定了在神经元系祖细胞中上调的基因为主要依赖基因。在这些基因中,CDK6 是一个可靶向的脆弱基因:DHG-H3G34肿瘤细胞对CDK4/6抑制剂和CDK6特异性降解剂的敏感性增强,促进向更成熟的中间神经元样状态转变,减少肿瘤生长,延长异种移植存活期。值得注意的是,一名进展期DHG-H3G34患者在接受CDK4/6抑制剂治疗后,病情稳定了17个月。这项研究强调了DHG-H3G34特有的神经元间祖细胞样状态,即在特征性龛位中组织起来的神经元间祖细胞样状态,突出表明CDK6是一个有希望的临床可操作靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cancer Cell
Cancer Cell 医学-肿瘤学
CiteScore
55.20
自引率
1.20%
发文量
179
审稿时长
4-8 weeks
期刊介绍: Cancer Cell is a journal that focuses on promoting major advances in cancer research and oncology. The primary criteria for considering manuscripts are as follows: Major advances: Manuscripts should provide significant advancements in answering important questions related to naturally occurring cancers. Translational research: The journal welcomes translational research, which involves the application of basic scientific findings to human health and clinical practice. Clinical investigations: Cancer Cell is interested in publishing clinical investigations that contribute to establishing new paradigms in the treatment, diagnosis, or prevention of cancers. Insights into cancer biology: The journal values clinical investigations that provide important insights into cancer biology beyond what has been revealed by preclinical studies. Mechanism-based proof-of-principle studies: Cancer Cell encourages the publication of mechanism-based proof-of-principle clinical studies, which demonstrate the feasibility of a specific therapeutic approach or diagnostic test.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信