Perfect quantum protractors

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2024-09-03 DOI:10.22331/q-2024-09-03-1459
Michał Piotrak, Marek Kopciuch, Arash Dezhang Fard, Magdalena Smolis, Szymon Pustelny, Kamil Korzekwa
{"title":"Perfect quantum protractors","authors":"Michał Piotrak, Marek Kopciuch, Arash Dezhang Fard, Magdalena Smolis, Szymon Pustelny, Kamil Korzekwa","doi":"10.22331/q-2024-09-03-1459","DOIUrl":null,"url":null,"abstract":"In this paper we introduce and investigate the concept of a $\\textit{perfect quantum protractor}$, a pure quantum state $|\\psi\\rangle\\in\\mathcal{H}$ that generates three different orthogonal bases of $\\mathcal{H}$ under rotations around each of the three perpendicular axes. Such states can be understood as pure states of maximal uncertainty with regards to the three components of the angular momentum operator, as we prove that they maximise various entropic and variance-based measures of such uncertainty. We argue that perfect quantum protractors can only exist for systems with a well-defined total angular momentum $j$, and we prove that they do not exist for $j\\in\\{1/2,2,5/2\\}$, but they do exist for $j\\in\\{1,3/2,3\\}$ (with numerical evidence for their existence when $j=7/2$). We also explain that perfect quantum protractors form an optimal resource for a metrological task of estimating the angle of rotation around (or the strength of magnetic field along) one of the three perpendicular axes, when the axis is not $\\textit{a priori}$ known. Finally, we demonstrate this metrological utility by performing an experiment with warm atomic vapours of rubidium-87, where we prepare a perfect quantum protractor for a spin-1 system, let it precess around $x$, $y$ or $z$ axis, and then employ it to optimally estimate the rotation angle.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"51 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2024-09-03-1459","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we introduce and investigate the concept of a $\textit{perfect quantum protractor}$, a pure quantum state $|\psi\rangle\in\mathcal{H}$ that generates three different orthogonal bases of $\mathcal{H}$ under rotations around each of the three perpendicular axes. Such states can be understood as pure states of maximal uncertainty with regards to the three components of the angular momentum operator, as we prove that they maximise various entropic and variance-based measures of such uncertainty. We argue that perfect quantum protractors can only exist for systems with a well-defined total angular momentum $j$, and we prove that they do not exist for $j\in\{1/2,2,5/2\}$, but they do exist for $j\in\{1,3/2,3\}$ (with numerical evidence for their existence when $j=7/2$). We also explain that perfect quantum protractors form an optimal resource for a metrological task of estimating the angle of rotation around (or the strength of magnetic field along) one of the three perpendicular axes, when the axis is not $\textit{a priori}$ known. Finally, we demonstrate this metrological utility by performing an experiment with warm atomic vapours of rubidium-87, where we prepare a perfect quantum protractor for a spin-1 system, let it precess around $x$, $y$ or $z$ axis, and then employ it to optimally estimate the rotation angle.
完美量子量角器
在本文中,我们引入并研究了$textit{perfect quantum protractor}$的概念,它是一种纯量子态$|\psi\rangle\in\mathcal{H}$,在围绕三个垂直轴的旋转下产生三个不同的正交基$\mathcal{H}$。这种状态可以理解为与角动量算子的三个分量有关的最大不确定性的纯粹状态,因为我们证明它们最大化了这种不确定性的各种基于熵和方差的度量。我们认为,完美量子质点只能存在于具有定义明确的总角动量 $j$ 的系统中,我们证明它们在 $j\in\{1/2,2,5/2\}$ 时不存在,但在 $j\in\{1,3/2,3\}$ 时存在(当 $j=7/2$ 时有数值证据证明它们的存在)。我们还解释了完美量子量角器是计量任务的最佳资源,它可以估算围绕三个垂直轴之一的旋转角度(或沿该轴的磁场强度),而该轴并非 $\textit{a priori}$ 已知。最后,我们用铷-87 的温原子蒸气进行了一次实验,证明了量子量角器在计量学上的实用性。在该实验中,我们为一个自旋-1 系统准备了一个完美的量子量角器,让它围绕 $x$、$y$ 或 $z$ 轴预演,然后用它来最优化地估计旋转角度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信