{"title":"A robust multi-stage intrusion detection system for in-vehicle network security using hierarchical federated learning","authors":"Muzun Althunayyan , Amir Javed , Omer Rana","doi":"10.1016/j.vehcom.2024.100837","DOIUrl":null,"url":null,"abstract":"<div><p>As connected and autonomous vehicles proliferate, the Controller Area Network (CAN) bus has become the predominant communication standard for in-vehicle networks due to its speed and efficiency. However, the CAN bus lacks basic security measures such as authentication and encryption, making it highly vulnerable to cyberattacks. To ensure in-vehicle security, intrusion detection systems (IDSs) must detect seen attacks and provide a robust defense against new, unseen attacks while remaining lightweight for practical deployment. Previous work has relied solely on the CAN ID feature or has used traditional machine learning (ML) approaches with manual feature extraction. These approaches overlook other exploitable features, making it challenging to adapt to new unseen attack variants and compromising security. This paper introduces a cutting-edge, novel, lightweight, in-vehicle, IDS-leveraging, deep learning (DL) algorithm to address these limitations. The proposed IDS employs a multi-stage approach: an artificial neural network (ANN) in the first stage to detect seen attacks, and a Long Short-Term Memory (LSTM) autoencoder in the second stage to detect new, unseen attacks. To understand and analyze diverse driving behaviors, update the model with the latest attack patterns, and preserve data privacy, we propose a theoretical framework to deploy our IDS in a hierarchical federated learning (H-FL) environment. Experimental results demonstrate that our IDS achieves an F1-score exceeding 0.99 for seen attacks and exceeding 0.95 for novel attacks, with a detection rate of 99.99%. Additionally, the false alarm rate (FAR) is exceptionally low at 0.016%, minimizing false alarms. Despite using DL algorithms known for their effectiveness in identifying sophisticated and zero-day attacks, the IDS remains lightweight, ensuring its feasibility for real-world deployment. This makes our model robust against seen and unseen attacks.</p></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214209624001128/pdfft?md5=5c13cb7ede7ac0fd94530908e6c0a393&pid=1-s2.0-S2214209624001128-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicular Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214209624001128","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
As connected and autonomous vehicles proliferate, the Controller Area Network (CAN) bus has become the predominant communication standard for in-vehicle networks due to its speed and efficiency. However, the CAN bus lacks basic security measures such as authentication and encryption, making it highly vulnerable to cyberattacks. To ensure in-vehicle security, intrusion detection systems (IDSs) must detect seen attacks and provide a robust defense against new, unseen attacks while remaining lightweight for practical deployment. Previous work has relied solely on the CAN ID feature or has used traditional machine learning (ML) approaches with manual feature extraction. These approaches overlook other exploitable features, making it challenging to adapt to new unseen attack variants and compromising security. This paper introduces a cutting-edge, novel, lightweight, in-vehicle, IDS-leveraging, deep learning (DL) algorithm to address these limitations. The proposed IDS employs a multi-stage approach: an artificial neural network (ANN) in the first stage to detect seen attacks, and a Long Short-Term Memory (LSTM) autoencoder in the second stage to detect new, unseen attacks. To understand and analyze diverse driving behaviors, update the model with the latest attack patterns, and preserve data privacy, we propose a theoretical framework to deploy our IDS in a hierarchical federated learning (H-FL) environment. Experimental results demonstrate that our IDS achieves an F1-score exceeding 0.99 for seen attacks and exceeding 0.95 for novel attacks, with a detection rate of 99.99%. Additionally, the false alarm rate (FAR) is exceptionally low at 0.016%, minimizing false alarms. Despite using DL algorithms known for their effectiveness in identifying sophisticated and zero-day attacks, the IDS remains lightweight, ensuring its feasibility for real-world deployment. This makes our model robust against seen and unseen attacks.
期刊介绍:
Vehicular communications is a growing area of communications between vehicles and including roadside communication infrastructure. Advances in wireless communications are making possible sharing of information through real time communications between vehicles and infrastructure. This has led to applications to increase safety of vehicles and communication between passengers and the Internet. Standardization efforts on vehicular communication are also underway to make vehicular transportation safer, greener and easier.
The aim of the journal is to publish high quality peer–reviewed papers in the area of vehicular communications. The scope encompasses all types of communications involving vehicles, including vehicle–to–vehicle and vehicle–to–infrastructure. The scope includes (but not limited to) the following topics related to vehicular communications:
Vehicle to vehicle and vehicle to infrastructure communications
Channel modelling, modulating and coding
Congestion Control and scalability issues
Protocol design, testing and verification
Routing in vehicular networks
Security issues and countermeasures
Deployment and field testing
Reducing energy consumption and enhancing safety of vehicles
Wireless in–car networks
Data collection and dissemination methods
Mobility and handover issues
Safety and driver assistance applications
UAV
Underwater communications
Autonomous cooperative driving
Social networks
Internet of vehicles
Standardization of protocols.