SeulChan Hong , Geonwoo Baek , Jae Young Jang , Byungkeun Na , J.H. Jeong , C.Y. Lee , Min Park , Jaewook Kim , Jong-Gu Kwak , Yong-Su Na
{"title":"The impact of stray magnetic fields on the KSTAR NBI performance","authors":"SeulChan Hong , Geonwoo Baek , Jae Young Jang , Byungkeun Na , J.H. Jeong , C.Y. Lee , Min Park , Jaewook Kim , Jong-Gu Kwak , Yong-Su Na","doi":"10.1016/j.fusengdes.2024.114646","DOIUrl":null,"url":null,"abstract":"<div><p>The stray magnetic fields generated by a plasma discharge impact the performance of neutral beam injection (NBI), leading to a decline in the plasma performance of the Korea Superconducting Tokamak Advanced Research (KSTAR). To evaluate the impact of the stray magnetic field on the NBI performance, a Monte Carlo simulation tool was developed. The simulation tool integrates the stray magnetic fields, NBI beam line components, and charge exchange processes comprehensively, allowing for quantitative analysis of the NBI performance reduction due to the stray magnetic fields. The high pressure of the beam chamber, along with the stray magnetic fields, causes a significant reduction of the beam power, emphasizing the need to maintain low vacuum pressure. However, the stray magnetic field does not significantly affect the injection angle of the beam particles reaching the tokamak. Predictive integrated simulations show that the decrease in beam performance due to stray magnetic fields can affect a degradation in plasma performance during long pulse discharge in KSTAR.</p></div>","PeriodicalId":55133,"journal":{"name":"Fusion Engineering and Design","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fusion Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920379624004976","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The stray magnetic fields generated by a plasma discharge impact the performance of neutral beam injection (NBI), leading to a decline in the plasma performance of the Korea Superconducting Tokamak Advanced Research (KSTAR). To evaluate the impact of the stray magnetic field on the NBI performance, a Monte Carlo simulation tool was developed. The simulation tool integrates the stray magnetic fields, NBI beam line components, and charge exchange processes comprehensively, allowing for quantitative analysis of the NBI performance reduction due to the stray magnetic fields. The high pressure of the beam chamber, along with the stray magnetic fields, causes a significant reduction of the beam power, emphasizing the need to maintain low vacuum pressure. However, the stray magnetic field does not significantly affect the injection angle of the beam particles reaching the tokamak. Predictive integrated simulations show that the decrease in beam performance due to stray magnetic fields can affect a degradation in plasma performance during long pulse discharge in KSTAR.
期刊介绍:
The journal accepts papers about experiments (both plasma and technology), theory, models, methods, and designs in areas relating to technology, engineering, and applied science aspects of magnetic and inertial fusion energy. Specific areas of interest include: MFE and IFE design studies for experiments and reactors; fusion nuclear technologies and materials, including blankets and shields; analysis of reactor plasmas; plasma heating, fuelling, and vacuum systems; drivers, targets, and special technologies for IFE, controls and diagnostics; fuel cycle analysis and tritium reprocessing and handling; operations and remote maintenance of reactors; safety, decommissioning, and waste management; economic and environmental analysis of components and systems.