{"title":"Design and optimization of functionally-graded triangular lattices for multiple loading conditions","authors":"","doi":"10.1016/j.cma.2024.117335","DOIUrl":null,"url":null,"abstract":"<div><p>Aligning lattice infills with the principal stress directions in loaded objects is crucial for improving stiffness. However, this principle only works for a single loading condition, where the stress field in 2D is described by two orthogonal principal stress directions. In this paper, we introduce a novel approach for designing and optimizing triangular lattice structures to accommodate multiple loading conditions, i.e., multiple stress fields need to be considered. Our method comprises two main steps: homogenization-based topology optimization and geometry-based de-homogenization. To ensure geometric regularity of the triangular lattices, we propose a simplified version of the general rank-3 laminate and parameterize the design domain using equilateral triangles with unique edge thickness. During optimization, edge thicknesses and orientations are adjusted based on the homogenized properties of the lattice. Our numerical findings demonstrate that this simplification introduces only a slight decrease in stiffness of less than 5% compared to using the general rank-3 laminate, and results in lattice structures with compelling geometric regularity. For geometry-based de-homogenization, we adopt a field-aligned triangulation approach to generate a globally consistent triangle mesh in which each triangle is oriented according to the optimized orientation field. Our approach for handling multiple loading conditions, akin to de-homogenization techniques for single loading conditions, yields highly detailed, optimized and spatially varying lattice structures. The method is computationally efficient, as simulations and optimizations are conducted at a low-resolution discretization of the design domain. Furthermore, since our approach is geometry-based, obtained structures are encoded into a compact geometric format that facilitates downstream operations such as editing and fabrication.</p></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0045782524005905/pdfft?md5=6d3a38dff3da971ea4a00c1953e0d3e6&pid=1-s2.0-S0045782524005905-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524005905","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Aligning lattice infills with the principal stress directions in loaded objects is crucial for improving stiffness. However, this principle only works for a single loading condition, where the stress field in 2D is described by two orthogonal principal stress directions. In this paper, we introduce a novel approach for designing and optimizing triangular lattice structures to accommodate multiple loading conditions, i.e., multiple stress fields need to be considered. Our method comprises two main steps: homogenization-based topology optimization and geometry-based de-homogenization. To ensure geometric regularity of the triangular lattices, we propose a simplified version of the general rank-3 laminate and parameterize the design domain using equilateral triangles with unique edge thickness. During optimization, edge thicknesses and orientations are adjusted based on the homogenized properties of the lattice. Our numerical findings demonstrate that this simplification introduces only a slight decrease in stiffness of less than 5% compared to using the general rank-3 laminate, and results in lattice structures with compelling geometric regularity. For geometry-based de-homogenization, we adopt a field-aligned triangulation approach to generate a globally consistent triangle mesh in which each triangle is oriented according to the optimized orientation field. Our approach for handling multiple loading conditions, akin to de-homogenization techniques for single loading conditions, yields highly detailed, optimized and spatially varying lattice structures. The method is computationally efficient, as simulations and optimizations are conducted at a low-resolution discretization of the design domain. Furthermore, since our approach is geometry-based, obtained structures are encoded into a compact geometric format that facilitates downstream operations such as editing and fabrication.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.