{"title":"Message passing based multitarget tracking with merged measurements","authors":"Jingling Li, Lin Gao, Shangyu Zhao, Ping Wei","doi":"10.1016/j.sigpro.2024.109682","DOIUrl":null,"url":null,"abstract":"<div><p>This paper considers the problem of multitarget tracking (MT) under situations where sensors have limited resolution, which leads to the presence of merged measurements (MMs). In general, an algorithm for MT under MMs can be derived by extending its standard MT counterpart which assumes that each measurement can come from at most one target. However, such an extension is by no means trivial due to the fact that one must consider data association between target groups to measurements, which results in exponential computational increasing along with the number of targets. In order to address such a difficulty, this paper proposes to adopt the message passing (MP) algorithm, and a new factor graph is constructed for MT under MMs. Then the sum–product algorithm (SPA) and max-sum algorithm (MSA) is jointly exploited for belief propagation, where the SPA is adopted for calculating the messages used for prediction and update, and the MSA is employed for efficiently perform data association. The analytical Gaussian mixture (GM) implementation is also devised for the proposed algorithm. Computational burden analyses show that the computational complexity of proposed algorithm scales linearly with respect to the number of targets and measurements. The performance of proposed algorithm is demonstrated via simulations.</p></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"227 ","pages":"Article 109682"},"PeriodicalIF":3.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168424003025","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper considers the problem of multitarget tracking (MT) under situations where sensors have limited resolution, which leads to the presence of merged measurements (MMs). In general, an algorithm for MT under MMs can be derived by extending its standard MT counterpart which assumes that each measurement can come from at most one target. However, such an extension is by no means trivial due to the fact that one must consider data association between target groups to measurements, which results in exponential computational increasing along with the number of targets. In order to address such a difficulty, this paper proposes to adopt the message passing (MP) algorithm, and a new factor graph is constructed for MT under MMs. Then the sum–product algorithm (SPA) and max-sum algorithm (MSA) is jointly exploited for belief propagation, where the SPA is adopted for calculating the messages used for prediction and update, and the MSA is employed for efficiently perform data association. The analytical Gaussian mixture (GM) implementation is also devised for the proposed algorithm. Computational burden analyses show that the computational complexity of proposed algorithm scales linearly with respect to the number of targets and measurements. The performance of proposed algorithm is demonstrated via simulations.
期刊介绍:
Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing.
Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.