Wenwei Li , Wu Chen , Zimin Dai , Xiaokang Chai , Sile An , Zhuang Guan , Wei Zhou , Jianwei Chen , Hui Gong , Qingming Luo , Zhao Feng , Anan Li
{"title":"Graph-based cell pattern recognition for merging the multi-modal optical microscopic image of neurons","authors":"Wenwei Li , Wu Chen , Zimin Dai , Xiaokang Chai , Sile An , Zhuang Guan , Wei Zhou , Jianwei Chen , Hui Gong , Qingming Luo , Zhao Feng , Anan Li","doi":"10.1016/j.cmpb.2024.108392","DOIUrl":null,"url":null,"abstract":"<div><p>A deep understanding of neuron structure and function is crucial for elucidating brain mechanisms, diagnosing and treating diseases. Optical microscopy, pivotal in neuroscience, illuminates neuronal shapes, projections, and electrical activities. To explore the projection of specific functional neurons, scientists have been developing optical-based multimodal imaging strategies to simultaneously capture dynamic <em>in vivo</em> signals and static <em>ex vivo</em> structures from the same neuron. However, the original position of neurons is highly susceptible to displacement during <em>ex vivo</em> imaging, presenting a significant challenge for integrating multimodal information at the single-neuron level. This study introduces a graph-model-based approach for cell image matching, facilitating precise and automated pairing of sparsely labeled neurons across different optical microscopic images. It has been shown that utilizing neuron distribution as a matching feature can mitigate modal differences, the high-order graph model can address scale inconsistency, and the nonlinear iteration can resolve discrepancies in neuron density. This strategy was applied to the connectivity study of the mouse visual cortex, performing cell matching between the two-photon calcium image and the HD-fMOST brain-wide anatomical image sets. Experimental results demonstrate 96.67% precision, 85.29% recall rate, and 90.63% F1 Score, comparable to expert technicians. This study builds a bridge between functional and structural imaging, offering crucial technical support for neuron classification and circuitry analysis.</p></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"256 ","pages":"Article 108392"},"PeriodicalIF":4.9000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169260724003857/pdfft?md5=1fb34b63a68ae05eaabf28402cd73721&pid=1-s2.0-S0169260724003857-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260724003857","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
A deep understanding of neuron structure and function is crucial for elucidating brain mechanisms, diagnosing and treating diseases. Optical microscopy, pivotal in neuroscience, illuminates neuronal shapes, projections, and electrical activities. To explore the projection of specific functional neurons, scientists have been developing optical-based multimodal imaging strategies to simultaneously capture dynamic in vivo signals and static ex vivo structures from the same neuron. However, the original position of neurons is highly susceptible to displacement during ex vivo imaging, presenting a significant challenge for integrating multimodal information at the single-neuron level. This study introduces a graph-model-based approach for cell image matching, facilitating precise and automated pairing of sparsely labeled neurons across different optical microscopic images. It has been shown that utilizing neuron distribution as a matching feature can mitigate modal differences, the high-order graph model can address scale inconsistency, and the nonlinear iteration can resolve discrepancies in neuron density. This strategy was applied to the connectivity study of the mouse visual cortex, performing cell matching between the two-photon calcium image and the HD-fMOST brain-wide anatomical image sets. Experimental results demonstrate 96.67% precision, 85.29% recall rate, and 90.63% F1 Score, comparable to expert technicians. This study builds a bridge between functional and structural imaging, offering crucial technical support for neuron classification and circuitry analysis.
期刊介绍:
To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine.
Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.