INS/UWB fusion localization algorithm in indoor environment based on variational Bayesian and error compensation

IF 3.7 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
{"title":"INS/UWB fusion localization algorithm in indoor environment based on variational Bayesian and error compensation","authors":"","doi":"10.1016/j.jfranklin.2024.107204","DOIUrl":null,"url":null,"abstract":"<div><p>Localization technology is crucial for indoor robot navigation. However, because of the intricacies inherent in the indoor setting, the signal transmission is vulnerable to the interference of obstacles, which leads to the decline of positioning accuracy. Ultra-Wideband (UWB) has the characteristics of channel insensitivity and high localization accuracy. Inertial navigation system (INS) functions independently as a navigation system, and its positioning results will not be affected due to non-line-of-sight (NLOS) interference. When using UWB to locate the mobile node, the Variational Bayesian Gaussian Mixture Model (VBGMM) clustering algorithm based on Gaussian Mixture Model (GMM) is applied to lessen the influence of NLOS propagation. This paper proposed a loose coupling of the INS and UWB, which combines the advantages of the two subsystems and improves the performance of the positioning system. On the basis of INS autonomous positioning, the maximum entropy fuzzy generalized probability data association filter (MEF-GPDAF) is used to modify the INS positioning results, and then the virtual inertia points are further built to compensate the error of the corrected coordinates. Finally, Unscented Kalman Filter is applied to the compensated coordinates for enhanced positioning. Simulation indicates that the proposed approach in this paper exhibits superior location accuracy. The real experimental results show that the proposed algorithm achieves an average improvement of 61.12% in positioning accuracy.</p></div>","PeriodicalId":17283,"journal":{"name":"Journal of The Franklin Institute-engineering and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Franklin Institute-engineering and Applied Mathematics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016003224006252","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Localization technology is crucial for indoor robot navigation. However, because of the intricacies inherent in the indoor setting, the signal transmission is vulnerable to the interference of obstacles, which leads to the decline of positioning accuracy. Ultra-Wideband (UWB) has the characteristics of channel insensitivity and high localization accuracy. Inertial navigation system (INS) functions independently as a navigation system, and its positioning results will not be affected due to non-line-of-sight (NLOS) interference. When using UWB to locate the mobile node, the Variational Bayesian Gaussian Mixture Model (VBGMM) clustering algorithm based on Gaussian Mixture Model (GMM) is applied to lessen the influence of NLOS propagation. This paper proposed a loose coupling of the INS and UWB, which combines the advantages of the two subsystems and improves the performance of the positioning system. On the basis of INS autonomous positioning, the maximum entropy fuzzy generalized probability data association filter (MEF-GPDAF) is used to modify the INS positioning results, and then the virtual inertia points are further built to compensate the error of the corrected coordinates. Finally, Unscented Kalman Filter is applied to the compensated coordinates for enhanced positioning. Simulation indicates that the proposed approach in this paper exhibits superior location accuracy. The real experimental results show that the proposed algorithm achieves an average improvement of 61.12% in positioning accuracy.

基于变异贝叶斯和误差补偿的室内环境 INS/UWB 融合定位算法
定位技术对于室内机器人导航至关重要。然而,由于室内环境错综复杂,信号传输容易受到障碍物的干扰,导致定位精度下降。超宽带(UWB)具有信道不敏感和定位精度高的特点。惯性导航系统(INS)作为导航系统独立运行,其定位结果不会受到非视距(NLOS)干扰的影响。在使用 UWB 定位移动节点时,为了减少非视距传播的影响,需要使用基于高斯混杂模型(GMM)的变异贝叶斯高斯混杂模型(VBGMM)聚类算法。本文提出了一种松耦合的 INS 和 UWB,它结合了两个子系统的优势,提高了定位系统的性能。在 INS 自主定位的基础上,利用最大熵模糊广义概率数据关联滤波器(MEF-GPDAF)对 INS 定位结果进行修正,然后进一步建立虚拟惯性点来补偿修正后的坐标误差。最后,对补偿后的坐标应用无痕卡尔曼滤波器进行增强定位。仿真表明,本文提出的方法具有更高的定位精度。实际实验结果表明,所提算法的定位精度平均提高了 61.12%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
14.60%
发文量
586
审稿时长
6.9 months
期刊介绍: The Journal of The Franklin Institute has an established reputation for publishing high-quality papers in the field of engineering and applied mathematics. Its current focus is on control systems, complex networks and dynamic systems, signal processing and communications and their applications. All submitted papers are peer-reviewed. The Journal will publish original research papers and research review papers of substance. Papers and special focus issues are judged upon possible lasting value, which has been and continues to be the strength of the Journal of The Franklin Institute.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信