Epid data explorer: A visualization tool for exploring and comparing spatio-temporal epidemiological data.

IF 2.2 3区 医学 Q2 HEALTH CARE SCIENCES & SERVICES
Laetitia Viau, Jérôme Azé, Fati Chen, Pierre Pompidor, Pascal Poncelet, Vincent Raveneau, Nancy Rodriguez, Arnaud Sallaberry
{"title":"Epid data explorer: A visualization tool for exploring and comparing spatio-temporal epidemiological data.","authors":"Laetitia Viau, Jérôme Azé, Fati Chen, Pierre Pompidor, Pascal Poncelet, Vincent Raveneau, Nancy Rodriguez, Arnaud Sallaberry","doi":"10.1177/14604582241279720","DOIUrl":null,"url":null,"abstract":"<p><p>The analysis of large sets of spatio-temporal data is a fundamental challenge in epidemiological research. As the quantity and the complexity of such kind of data increases, automatic analysis approaches, such as statistics, data mining, machine learning, etc., can be used to extract useful information. While these approaches have proven effective, they require a priori knowledge of the information being sought, and some interesting insights into the data may be missed. To bridge this gap, information visualization offers a set of techniques for not only presenting known information, but also exploring data without having a hypothesis formulated beforehand. In this paper, we introduce Epid Data Explorer (EDE), a visualization tool that enables exploration of spatio-temporal epidemiological data. EDE allows easy comparisons of indicators and trends across different geographical areas and times. It facilitates this exploration through ready-to-use pre-loaded datasets as well as user-chosen datasets. The tool also provides a secure architecture for easily importing new datasets while ensuring confidentiality. In two use cases using data associated with the COVID-19 epidemic, we demonstrate the substantial impact of implemented lockdown measures on mobility and how EDE allows assessing correlations between the spread of COVID-19 and weather conditions.</p>","PeriodicalId":55069,"journal":{"name":"Health Informatics Journal","volume":"30 3","pages":"14604582241279720"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Informatics Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/14604582241279720","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

The analysis of large sets of spatio-temporal data is a fundamental challenge in epidemiological research. As the quantity and the complexity of such kind of data increases, automatic analysis approaches, such as statistics, data mining, machine learning, etc., can be used to extract useful information. While these approaches have proven effective, they require a priori knowledge of the information being sought, and some interesting insights into the data may be missed. To bridge this gap, information visualization offers a set of techniques for not only presenting known information, but also exploring data without having a hypothesis formulated beforehand. In this paper, we introduce Epid Data Explorer (EDE), a visualization tool that enables exploration of spatio-temporal epidemiological data. EDE allows easy comparisons of indicators and trends across different geographical areas and times. It facilitates this exploration through ready-to-use pre-loaded datasets as well as user-chosen datasets. The tool also provides a secure architecture for easily importing new datasets while ensuring confidentiality. In two use cases using data associated with the COVID-19 epidemic, we demonstrate the substantial impact of implemented lockdown measures on mobility and how EDE allows assessing correlations between the spread of COVID-19 and weather conditions.

Epid 数据资源管理器:用于探索和比较时空流行病学数据的可视化工具。
分析大量时空数据集是流行病学研究的一项基本挑战。随着这类数据的数量和复杂性的增加,统计、数据挖掘、机器学习等自动分析方法可用于提取有用信息。虽然这些方法已被证明行之有效,但它们需要对所寻求的信息有先验的了解,因此可能会遗漏数据中一些有趣的见解。为了弥合这一差距,信息可视化提供了一套技术,不仅可以呈现已知信息,还可以在没有事先提出假设的情况下探索数据。在本文中,我们将介绍 Epid Data Explorer(EDE),这是一种能够探索时空流行病学数据的可视化工具。EDE 可以轻松比较不同地理区域和时间的指标和趋势。它通过随时可用的预加载数据集和用户选择的数据集来促进这种探索。该工具还提供了一个安全架构,可在确保保密性的同时轻松导入新数据集。在使用 COVID-19 流行病相关数据的两个使用案例中,我们展示了实施封锁措施对流动性的重大影响,以及 EDE 如何评估 COVID-19 传播与天气条件之间的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Health Informatics Journal
Health Informatics Journal HEALTH CARE SCIENCES & SERVICES-MEDICAL INFORMATICS
CiteScore
7.80
自引率
6.70%
发文量
80
审稿时长
6 months
期刊介绍: Health Informatics Journal is an international peer-reviewed journal. All papers submitted to Health Informatics Journal are subject to peer review by members of a carefully appointed editorial board. The journal operates a conventional single-blind reviewing policy in which the reviewer’s name is always concealed from the submitting author.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信