An extension of latent unknown clustering integrating multi-omics data (LUCID) incorporating incomplete omics data.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2024-08-24 eCollection Date: 2024-01-01 DOI:10.1093/bioadv/vbae123
Yinqi Zhao, Qiran Jia, Jesse Goodrich, Burcu Darst, David V Conti
{"title":"An extension of latent unknown clustering integrating multi-omics data (LUCID) incorporating incomplete omics data.","authors":"Yinqi Zhao, Qiran Jia, Jesse Goodrich, Burcu Darst, David V Conti","doi":"10.1093/bioadv/vbae123","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Latent unknown clustering integrating multi-omics data is a novel statistical model designed for multi-omics data analysis. It integrates omics data with exposures and an outcome through a latent cluster, elucidating how exposures influence processes reflected in multi-omics measurements, ultimately affecting an outcome. A significant challenge in multi-omics analysis is the issue of list-wise missingness. To address this, we extend the model to incorporate list-wise missingness within an integrated imputation framework, which can also handle sporadic missingness when necessary.</p><p><strong>Results: </strong>Simulation studies demonstrate that our integrated imputation approach produces consistent and less biased estimates, closely reflecting true underlying values. We applied this model to data from the ISGlobal/ATHLETE \"Exposome Data Challenge Event\" to explore the association between maternal exposure to hexachlorobenzene and childhood body mass index by integrating incomplete proteomics data from 1301 children. The model successfully estimated proteomics profiles for two clusters representing higher and lower body mass index, characterizing the potential profiles linking prenatal hexachlorobenzene levels and childhood body mass index.</p><p><strong>Availability and implementation: </strong>The proposed methods have been implemented in the R package <i>LUCIDus</i>. The source code is available at https://github.com/USCbiostats/LUCIDus.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368387/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Latent unknown clustering integrating multi-omics data is a novel statistical model designed for multi-omics data analysis. It integrates omics data with exposures and an outcome through a latent cluster, elucidating how exposures influence processes reflected in multi-omics measurements, ultimately affecting an outcome. A significant challenge in multi-omics analysis is the issue of list-wise missingness. To address this, we extend the model to incorporate list-wise missingness within an integrated imputation framework, which can also handle sporadic missingness when necessary.

Results: Simulation studies demonstrate that our integrated imputation approach produces consistent and less biased estimates, closely reflecting true underlying values. We applied this model to data from the ISGlobal/ATHLETE "Exposome Data Challenge Event" to explore the association between maternal exposure to hexachlorobenzene and childhood body mass index by integrating incomplete proteomics data from 1301 children. The model successfully estimated proteomics profiles for two clusters representing higher and lower body mass index, characterizing the potential profiles linking prenatal hexachlorobenzene levels and childhood body mass index.

Availability and implementation: The proposed methods have been implemented in the R package LUCIDus. The source code is available at https://github.com/USCbiostats/LUCIDus.

整合多组学数据的潜在未知聚类(LUCID)的扩展,纳入了不完整的组学数据。
动机整合多组学数据的潜在未知聚类是一种专为多组学数据分析设计的新型统计模型。它通过一个潜在聚类将 omics 数据与暴露和结果整合在一起,阐明暴露如何影响多组学测量所反映的过程,并最终影响结果。多组学分析中的一个重大挑战是列表缺失问题。为了解决这个问题,我们对模型进行了扩展,将列表缺失纳入了综合估算框架,必要时还可以处理零星缺失:模拟研究表明,我们的综合估算方法能产生一致且偏差较小的估计值,并能密切反映真实的基本值。我们将该模型应用于ISGlobal/ATHLETE "暴露组数据挑战活动 "的数据,通过整合1301名儿童的不完整蛋白质组学数据,探讨了母体暴露于六氯苯与儿童体重指数之间的关联。该模型成功估算出了代表较高和较低体重指数的两个群组的蛋白质组学特征,描述了产前六氯苯水平与儿童体重指数之间的潜在联系:建议的方法已在 R 软件包 LUCIDus 中实现。源代码见 https://github.com/USCbiostats/LUCIDus。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信