Sara Rodríguez-Mora , Clara Sánchez-Menéndez , Guiomar Bautista-Carrascosa , Elena Mateos , Lucia Moreno-Serna , Diego Megías , Juan Cantón , Valentín García-Gutiérrez , María Aránzazu Murciano-Antón , Miguel Cervero , Adam Spivak , Vicente Planelles , Mayte Coiras
{"title":"Dasatinib interferes with HIV-1 proviral integration and the inflammatory potential of monocyte-derived macrophages from people with HIV","authors":"Sara Rodríguez-Mora , Clara Sánchez-Menéndez , Guiomar Bautista-Carrascosa , Elena Mateos , Lucia Moreno-Serna , Diego Megías , Juan Cantón , Valentín García-Gutiérrez , María Aránzazu Murciano-Antón , Miguel Cervero , Adam Spivak , Vicente Planelles , Mayte Coiras","doi":"10.1016/j.bcp.2024.116512","DOIUrl":null,"url":null,"abstract":"<div><p>HIV-1 infection is efficiently controlled by the antiretroviral treatment (ART) but viral persistence in long-lived reservoirs formed by CD4 + T cells and macrophages impedes viral eradication and creates a chronic inflammatory environment. Dasatinib is a tyrosine kinase inhibitor clinically used against chronic myeloid leukemia (CML) that has also showed an anti-inflammatory potential. We previously reported that dasatinib is very efficient at interfering with HIV-1 infection of CD4 + T cells by preserving the antiviral activity of SAMHD1, an innate immune factor that blocks T-cell activation and proliferation and that is inactivated by phosphorylation at T592 (pSAMHD1). We observed that short-term treatment in vitro with dasatinib significantly reduced pSAMHD1 in monocyte-derived macrophages (MDMs) isolated from people with HIV (PWH) and healthy donors, interfering with HIV-1 infection. This inhibition was based on low levels of 2-LTR circles and proviral integration, while viral reverse transcription was not affected. MDMs isolated from people with CML on long-term treatment with dasatinib also showed low levels of pSAMHD1 and were resistant to HIV-1 infection. In addition, dasatinib decreased the inflammatory potential of MDMs by reducing the release of M1-related cytokines like TNFα, IL-1β, IL-6, CXCL8, and CXCL9, but preserving the antiviral activity through normal levels of IL-12 and IFNγ. Due to the production of M2-related anti-inflammatory cytokines like IL-1RA and IL-10 was also impaired, dasatinib appeared to interfere with MDMs differentiation. The use of dasatinib along with ART could be used against HIV-1 reservoir in CD4 and macrophages and to alleviate the chronic inflammation characteristic of PWH.</p></div>","PeriodicalId":8806,"journal":{"name":"Biochemical pharmacology","volume":"229 ","pages":"Article 116512"},"PeriodicalIF":5.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0006295224004957/pdfft?md5=5699eb7b00c118ce2031e8b50c7863b7&pid=1-s2.0-S0006295224004957-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006295224004957","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
HIV-1 infection is efficiently controlled by the antiretroviral treatment (ART) but viral persistence in long-lived reservoirs formed by CD4 + T cells and macrophages impedes viral eradication and creates a chronic inflammatory environment. Dasatinib is a tyrosine kinase inhibitor clinically used against chronic myeloid leukemia (CML) that has also showed an anti-inflammatory potential. We previously reported that dasatinib is very efficient at interfering with HIV-1 infection of CD4 + T cells by preserving the antiviral activity of SAMHD1, an innate immune factor that blocks T-cell activation and proliferation and that is inactivated by phosphorylation at T592 (pSAMHD1). We observed that short-term treatment in vitro with dasatinib significantly reduced pSAMHD1 in monocyte-derived macrophages (MDMs) isolated from people with HIV (PWH) and healthy donors, interfering with HIV-1 infection. This inhibition was based on low levels of 2-LTR circles and proviral integration, while viral reverse transcription was not affected. MDMs isolated from people with CML on long-term treatment with dasatinib also showed low levels of pSAMHD1 and were resistant to HIV-1 infection. In addition, dasatinib decreased the inflammatory potential of MDMs by reducing the release of M1-related cytokines like TNFα, IL-1β, IL-6, CXCL8, and CXCL9, but preserving the antiviral activity through normal levels of IL-12 and IFNγ. Due to the production of M2-related anti-inflammatory cytokines like IL-1RA and IL-10 was also impaired, dasatinib appeared to interfere with MDMs differentiation. The use of dasatinib along with ART could be used against HIV-1 reservoir in CD4 and macrophages and to alleviate the chronic inflammation characteristic of PWH.
期刊介绍:
Biochemical Pharmacology publishes original research findings, Commentaries and review articles related to the elucidation of cellular and tissue function(s) at the biochemical and molecular levels, the modification of cellular phenotype(s) by genetic, transcriptional/translational or drug/compound-induced modifications, as well as the pharmacodynamics and pharmacokinetics of xenobiotics and drugs, the latter including both small molecules and biologics.
The journal''s target audience includes scientists engaged in the identification and study of the mechanisms of action of xenobiotics, biologics and drugs and in the drug discovery and development process.
All areas of cellular biology and cellular, tissue/organ and whole animal pharmacology fall within the scope of the journal. Drug classes covered include anti-infectives, anti-inflammatory agents, chemotherapeutics, cardiovascular, endocrinological, immunological, metabolic, neurological and psychiatric drugs, as well as research on drug metabolism and kinetics. While medicinal chemistry is a topic of complimentary interest, manuscripts in this area must contain sufficient biological data to characterize pharmacologically the compounds reported. Submissions describing work focused predominately on chemical synthesis and molecular modeling will not be considered for review.
While particular emphasis is placed on reporting the results of molecular and biochemical studies, research involving the use of tissue and animal models of human pathophysiology and toxicology is of interest to the extent that it helps define drug mechanisms of action, safety and efficacy.