Jeremy L Ritchey, Lindsi Filippi, Davis Ballard, Dehua Pei
{"title":"Bismuth-Cyclized Cell-Penetrating Peptides.","authors":"Jeremy L Ritchey, Lindsi Filippi, Davis Ballard, Dehua Pei","doi":"10.1021/acs.molpharmaceut.4c00688","DOIUrl":null,"url":null,"abstract":"<p><p>Intracellular delivery of biological cargos, which would yield new research tools and novel therapeutics, remains an active area of research. A convenient and potentially general approach involves the conjugation of a cell-penetrating peptide to a cargo of interest. However, linear CPPs lack sufficient cytosolic entry efficiency and metabolic stability, while previous backbone cyclized CPPs have several drawbacks including the necessity for chemical synthesis and posttranslational conjugation to peptide/protein cargos and epimerization during cyclization. We report here a new class of bismuth cyclized CPPs with excellent cytosolic entry efficiencies, proteolytic stability, and potential compatibility with genetic encoding and recombinant production.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c00688","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Intracellular delivery of biological cargos, which would yield new research tools and novel therapeutics, remains an active area of research. A convenient and potentially general approach involves the conjugation of a cell-penetrating peptide to a cargo of interest. However, linear CPPs lack sufficient cytosolic entry efficiency and metabolic stability, while previous backbone cyclized CPPs have several drawbacks including the necessity for chemical synthesis and posttranslational conjugation to peptide/protein cargos and epimerization during cyclization. We report here a new class of bismuth cyclized CPPs with excellent cytosolic entry efficiencies, proteolytic stability, and potential compatibility with genetic encoding and recombinant production.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.