Inferring galaxy cluster masses from cosmic microwave background lensing with neural simulation based inference

IF 5.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Eric J. Baxter and Shivam Pandey
{"title":"Inferring galaxy cluster masses from cosmic microwave background lensing with neural simulation based inference","authors":"Eric J. Baxter and Shivam Pandey","doi":"10.1088/1475-7516/2024/09/002","DOIUrl":null,"url":null,"abstract":"Gravitational lensing by massive galaxy clusters distorts the observed cosmic microwave background (CMB) on arcminute scales, and these distortions carry information about cluster masses. Standard approaches to extracting cluster mass constraints from the CMB cluster lensing signal are either sub-optimal, ignore important physical or observational effects, are computationally intractable, or require additional work to turn the lensing measurements into constraints on cluster masses. We apply simulation based inference (SBI) using neural likelihood models to the problem. We show that in circumstances where the exact likelihood can be computed, the SBI constraints on cluster masses are in agreement with the exact likelihood, demonstrating that the SBI constraints are close to optimal. In scenarios where the exact likelihood cannot be feasibly computed, SBI still recovers unbiased estimates of individual cluster masses and combined constraints from multiple clusters. SBI will be a powerful tool for constraining the masses of galaxy clusters detected by future cosmic surveys. Code to run the analyses presented here will be made publicly available.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2024/09/002","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Gravitational lensing by massive galaxy clusters distorts the observed cosmic microwave background (CMB) on arcminute scales, and these distortions carry information about cluster masses. Standard approaches to extracting cluster mass constraints from the CMB cluster lensing signal are either sub-optimal, ignore important physical or observational effects, are computationally intractable, or require additional work to turn the lensing measurements into constraints on cluster masses. We apply simulation based inference (SBI) using neural likelihood models to the problem. We show that in circumstances where the exact likelihood can be computed, the SBI constraints on cluster masses are in agreement with the exact likelihood, demonstrating that the SBI constraints are close to optimal. In scenarios where the exact likelihood cannot be feasibly computed, SBI still recovers unbiased estimates of individual cluster masses and combined constraints from multiple clusters. SBI will be a powerful tool for constraining the masses of galaxy clusters detected by future cosmic surveys. Code to run the analyses presented here will be made publicly available.
利用基于神经模拟的推理从宇宙微波背景透镜推断星系团质量
大质量星系团的引力透镜使观测到的宇宙微波背景(CMB)在弧分尺度上发生扭曲,这些扭曲携带着星系团质量的信息。从 CMB 星团透镜信号中提取星团质量约束的标准方法要么不够理想,要么忽略了重要的物理或观测效应,要么在计算上难以处理,要么需要额外的工作才能将透镜测量结果转化为星团质量约束。我们将基于神经似然模型的模拟推断(SBI)应用于这一问题。我们的研究表明,在可以计算精确似然的情况下,SBI 对星团质量的约束与精确似然一致,证明 SBI 约束接近最优。在无法计算精确似然的情况下,SBI 仍能恢复对单个星团质量的无偏估计和来自多个星团的综合约束。SBI 将成为约束未来宇宙巡天探测到的星系团质量的有力工具。本文介绍的分析代码将公开发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信