Noise Robustness of Quantum Relaxation for Combinatorial Optimization

Kentaro Tamura;Yohichi Suzuki;Rudy Raymond;Hiroshi C. Watanabe;Yuki Sato;Ruho Kondo;Michihiko Sugawara;Naoki Yamamoto
{"title":"Noise Robustness of Quantum Relaxation for Combinatorial Optimization","authors":"Kentaro Tamura;Yohichi Suzuki;Rudy Raymond;Hiroshi C. Watanabe;Yuki Sato;Ruho Kondo;Michihiko Sugawara;Naoki Yamamoto","doi":"10.1109/TQE.2024.3439135","DOIUrl":null,"url":null,"abstract":"Relaxation is a common way for dealing with combinatorial optimization problems. Quantum random-access optimization (QRAO) is a quantum-relaxation-based optimizer that uses fewer qubits than the number of bits in the original problem by encoding multiple variables per qubit using quantum random-access code (QRAC). Reducing the number of qubits will alleviate physical noise (typically, decoherence), and as a result, the quality of the binary solution of QRAO may be robust against noise, which is, however, unknown. In this article, we numerically demonstrate that the mean approximation ratio of the (3, 1)-QRAC Hamiltonian, i.e., the Hamiltonian utilizing the encoding of three bits into one qubit by QRAC, is less affected by noise compared with the conventional Ising Hamiltonian used in the quantum annealer and the quantum approximate optimization algorithm. Based on this observation, we discuss a plausible mechanism behind the robustness of QRAO under depolarizing noise. Finally, we assess the number of shots required to estimate the values of binary variables correctly under depolarizing noise and show that the (3, 1)-QRAC Hamiltonian requires less shots to achieve the same accuracy compared with the Ising Hamiltonian.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10623712","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10623712/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Relaxation is a common way for dealing with combinatorial optimization problems. Quantum random-access optimization (QRAO) is a quantum-relaxation-based optimizer that uses fewer qubits than the number of bits in the original problem by encoding multiple variables per qubit using quantum random-access code (QRAC). Reducing the number of qubits will alleviate physical noise (typically, decoherence), and as a result, the quality of the binary solution of QRAO may be robust against noise, which is, however, unknown. In this article, we numerically demonstrate that the mean approximation ratio of the (3, 1)-QRAC Hamiltonian, i.e., the Hamiltonian utilizing the encoding of three bits into one qubit by QRAC, is less affected by noise compared with the conventional Ising Hamiltonian used in the quantum annealer and the quantum approximate optimization algorithm. Based on this observation, we discuss a plausible mechanism behind the robustness of QRAO under depolarizing noise. Finally, we assess the number of shots required to estimate the values of binary variables correctly under depolarizing noise and show that the (3, 1)-QRAC Hamiltonian requires less shots to achieve the same accuracy compared with the Ising Hamiltonian.
组合优化量子松弛的噪声鲁棒性
松弛是处理组合优化问题的常用方法。量子随机存取优化(QRAO)是一种基于量子松弛的优化器,它通过量子随机存取码(QRAC)对每个量子比特的多个变量进行编码,使用的量子比特数少于原始问题的比特数。减少量子比特数将减轻物理噪声(通常是退相干),因此,QRAO 的二进制解的质量可能对噪声具有鲁棒性,但这一点尚不清楚。在本文中,我们从数值上证明了(3, 1)-QRAC 哈密顿,即利用 QRAC 将三个比特编码成一个量子比特的哈密顿,与量子退火器和量子近似优化算法中使用的传统伊辛哈密顿相比,其平均近似率受噪声的影响较小。基于这一观察结果,我们讨论了 QRAO 在去极化噪声下的鲁棒性背后的合理机制。最后,我们评估了在去极化噪声条件下正确估计二进制变量值所需的击球次数,结果表明与 Ising Hamiltonian 相比,(3, 1)-QRAC Hamiltonian 需要更少的击球次数就能达到相同的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信