Enhancing Hierarchical Transformers for Whole Brain Segmentation with Intracranial Measurements Integration.

Xin Yu, Yucheng Tang, Qi Yang, Ho Hin Lee, Shunxing Bao, Yuankai Huo, Bennett A Landman
{"title":"Enhancing Hierarchical Transformers for Whole Brain Segmentation with Intracranial Measurements Integration.","authors":"Xin Yu, Yucheng Tang, Qi Yang, Ho Hin Lee, Shunxing Bao, Yuankai Huo, Bennett A Landman","doi":"10.1117/12.3009084","DOIUrl":null,"url":null,"abstract":"<p><p>Whole brain segmentation with magnetic resonance imaging (MRI) enables the non-invasive measurement of brain regions, including total intracranial volume (TICV) and posterior fossa volume (PFV). Enhancing the existing whole brain segmentation methodology to incorporate intracranial measurements offers a heightened level of comprehensiveness in the analysis of brain structures. Despite its potential, the task of generalizing deep learning techniques for intracranial measurements faces data availability constraints due to limited manually annotated atlases encompassing whole brain and TICV/PFV labels. In this paper, we enhancing the hierarchical transformer UNesT for whole brain segmentation to achieve segmenting whole brain with 133 classes and TICV/PFV simultaneously. To address the problem of data scarcity, the model is first pretrained on 4859 T1-weighted (T1w) 3D volumes sourced from 8 different sites. These volumes are processed through a multi-atlas segmentation pipeline for label generation, while TICV/PFV labels are unavailable. Subsequently, the model is finetuned with 45 T1w 3D volumes from Open Access Series Imaging Studies (OASIS) where both 133 whole brain classes and TICV/PFV labels are available. We evaluate our method with Dice similarity coefficients(DSC). We show that our model is able to conduct precise TICV/PFV estimation while maintaining the 132 brain regions performance at a comparable level. Code and trained model are available at: https://github.com/MASILab/UNesT/wholebrainSeg.</p>","PeriodicalId":74505,"journal":{"name":"Proceedings of SPIE--the International Society for Optical Engineering","volume":"12930 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364374/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SPIE--the International Society for Optical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3009084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Whole brain segmentation with magnetic resonance imaging (MRI) enables the non-invasive measurement of brain regions, including total intracranial volume (TICV) and posterior fossa volume (PFV). Enhancing the existing whole brain segmentation methodology to incorporate intracranial measurements offers a heightened level of comprehensiveness in the analysis of brain structures. Despite its potential, the task of generalizing deep learning techniques for intracranial measurements faces data availability constraints due to limited manually annotated atlases encompassing whole brain and TICV/PFV labels. In this paper, we enhancing the hierarchical transformer UNesT for whole brain segmentation to achieve segmenting whole brain with 133 classes and TICV/PFV simultaneously. To address the problem of data scarcity, the model is first pretrained on 4859 T1-weighted (T1w) 3D volumes sourced from 8 different sites. These volumes are processed through a multi-atlas segmentation pipeline for label generation, while TICV/PFV labels are unavailable. Subsequently, the model is finetuned with 45 T1w 3D volumes from Open Access Series Imaging Studies (OASIS) where both 133 whole brain classes and TICV/PFV labels are available. We evaluate our method with Dice similarity coefficients(DSC). We show that our model is able to conduct precise TICV/PFV estimation while maintaining the 132 brain regions performance at a comparable level. Code and trained model are available at: https://github.com/MASILab/UNesT/wholebrainSeg.

利用颅内测量集成增强用于全脑分割的分层变换器
利用磁共振成像(MRI)进行全脑分割可对大脑区域进行无创测量,包括颅内总容积(TICV)和后窝容积(PFV)。加强现有的全脑分割方法,将颅内测量纳入其中,可提高大脑结构分析的全面性。尽管深度学习技术潜力巨大,但由于包含全脑和TICV/PFV标签的人工标注图集有限,为颅内测量推广深度学习技术的任务面临着数据可用性的限制。在本文中,我们增强了用于全脑分割的分层变换器 UNesT,以同时实现 133 个类别和 TICV/PFV 的全脑分割。为了解决数据稀缺的问题,我们首先对来自 8 个不同地点的 4859 个 T1 加权(T1w)三维卷进行了模型预训练。在无法获得 TICV/PFV 标签的情况下,通过多图谱分割管道对这些体量进行处理,以生成标签。随后,我们使用来自开放存取系列成像研究(OASIS)的 45 个 T1w 3D 容量对模型进行了微调,在这些容量中,133 个全脑类别和 TICV/PFV 标签均可用。我们用 Dice 相似性系数(DSC)对我们的方法进行了评估。结果表明,我们的模型能够进行精确的 TICV/PFV 估计,同时将 132 个脑区的性能保持在相当的水平。代码和训练好的模型可在以下网址获取:https://github.com/MASILab/UNesT/wholebrainSeg。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信