Characterizing Low-cost Registration for Photographic Images to Computed Tomography.

Michael E Kim, Ho Hin Lee, Karthik Ramadass, Chenyu Gao, Katherine Van Schaik, Eric Tkaczyk, Jeffrey Spraggins, Daniel C Moyer, Bennett A Landman
{"title":"Characterizing Low-cost Registration for Photographic Images to Computed Tomography.","authors":"Michael E Kim, Ho Hin Lee, Karthik Ramadass, Chenyu Gao, Katherine Van Schaik, Eric Tkaczyk, Jeffrey Spraggins, Daniel C Moyer, Bennett A Landman","doi":"10.1117/12.3005578","DOIUrl":null,"url":null,"abstract":"<p><p>Mapping information from photographic images to volumetric medical imaging scans is essential for linking spaces with physical environments, such as in image-guided surgery. Current methods of accurate photographic image to computed tomography (CT) image mapping can be computationally intensive and/or require specialized hardware. For general purpose 3-D mapping of bulk specimens in histological processing, a cost-effective solution is necessary. Here, we compare the integration of a commercial 3-D camera and cell phone imaging with a surface registration pipeline. Using surgical implants and chuck-eye steak as phantom tests, we obtain 3-D CT reconstruction and sets of photographic images from two sources: Canfield Imaging's H1 camera and an iPhone 14 Pro. We perform surface reconstruction from the photographic images using commercial tools and open-source code for Neural Radiance Fields (NeRF) respectively. We complete surface registration of the reconstructed surfaces with the iterative closest point (ICP) method. Manually placed landmarks were identified at three locations on each of the surfaces. Registration of the Canfield surfaces for three objects yields landmark distance errors of 1.747, 3.932, and 1.692 mm, while registration of the respective iPhone camera surfaces yields errors of 1.222, 2.061, and 5.155 mm. Photographic imaging of an organ sample prior to tissue sectioning provides a low-cost alternative to establish correspondence between histological samples and 3-D anatomical samples.</p>","PeriodicalId":74505,"journal":{"name":"Proceedings of SPIE--the International Society for Optical Engineering","volume":"12930 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364404/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SPIE--the International Society for Optical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3005578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mapping information from photographic images to volumetric medical imaging scans is essential for linking spaces with physical environments, such as in image-guided surgery. Current methods of accurate photographic image to computed tomography (CT) image mapping can be computationally intensive and/or require specialized hardware. For general purpose 3-D mapping of bulk specimens in histological processing, a cost-effective solution is necessary. Here, we compare the integration of a commercial 3-D camera and cell phone imaging with a surface registration pipeline. Using surgical implants and chuck-eye steak as phantom tests, we obtain 3-D CT reconstruction and sets of photographic images from two sources: Canfield Imaging's H1 camera and an iPhone 14 Pro. We perform surface reconstruction from the photographic images using commercial tools and open-source code for Neural Radiance Fields (NeRF) respectively. We complete surface registration of the reconstructed surfaces with the iterative closest point (ICP) method. Manually placed landmarks were identified at three locations on each of the surfaces. Registration of the Canfield surfaces for three objects yields landmark distance errors of 1.747, 3.932, and 1.692 mm, while registration of the respective iPhone camera surfaces yields errors of 1.222, 2.061, and 5.155 mm. Photographic imaging of an organ sample prior to tissue sectioning provides a low-cost alternative to establish correspondence between histological samples and 3-D anatomical samples.

照片图像与计算机断层扫描低成本配准的特征。
从摄影图像到体积医学成像扫描的信息映射对于连接空间与物理环境(如图像引导手术)至关重要。目前将摄影图像精确映射到计算机断层扫描(CT)图像的方法需要大量计算和/或专用硬件。对于组织学处理中大块标本的通用三维映射,需要一种经济高效的解决方案。在这里,我们比较了商用三维相机和手机成像与表面配准管道的集成。我们使用手术植入物和卡盘眼牛排作为模型试验,从两个来源获得三维 CT 重建和成套摄影图像:Canfield Imaging 公司的 H1 相机和 iPhone 14 Pro。我们分别使用商业工具和神经辐射场 (NeRF) 开源代码对摄影图像进行表面重建。我们使用迭代最近点 (ICP) 方法完成重建表面的表面注册。我们在每个表面的三个位置手动确定了地标。对三个物体的 Canfield 表面进行配准,得出的地标距离误差分别为 1.747、3.932 和 1.692 毫米,而对 iPhone 相机各自的表面进行配准,得出的误差分别为 1.222、2.061 和 5.155 毫米。在组织切片之前对器官样本进行摄影成像,为建立组织学样本和三维解剖样本之间的对应关系提供了一种低成本的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信